Properties

Label 8-432e4-1.1-c0e4-0-0
Degree $8$
Conductor $34828517376$
Sign $1$
Analytic cond. $0.00216054$
Root an. cond. $0.464323$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·13-s − 16-s + 4·31-s − 4·43-s + 2·49-s + 4·67-s + 4·97-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 4·208-s + 211-s + 223-s + ⋯
L(s)  = 1  − 4·13-s − 16-s + 4·31-s − 4·43-s + 2·49-s + 4·67-s + 4·97-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 8·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 4·208-s + 211-s + 223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{12}\)
Sign: $1$
Analytic conductor: \(0.00216054\)
Root analytic conductor: \(0.464323\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{12} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.3848645773\)
\(L(\frac12)\) \(\approx\) \(0.3848645773\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + T^{4} \)
3 \( 1 \)
good5$C_2^3$ \( 1 - T^{4} + T^{8} \)
7$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
11$C_2^3$ \( 1 - T^{4} + T^{8} \)
13$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
17$C_2^2$ \( ( 1 + T^{4} )^{2} \)
19$C_2^2$ \( ( 1 + T^{4} )^{2} \)
23$C_2$ \( ( 1 + T^{2} )^{4} \)
29$C_2^2$ \( ( 1 + T^{4} )^{2} \)
31$C_2$ \( ( 1 - T + T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + T^{4} )^{2} \)
41$C_2$ \( ( 1 + T^{2} )^{4} \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 + T^{2} )^{2} \)
47$C_2^2$ \( ( 1 + T^{4} )^{2} \)
53$C_2^3$ \( 1 - T^{4} + T^{8} \)
59$C_2^2$ \( ( 1 + T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + T^{4} )^{2} \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T^{2} )^{2} \)
71$C_2^2$ \( ( 1 + T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - T^{2} + T^{4} )^{2} \)
79$C_2$ \( ( 1 + T^{2} )^{4} \)
83$C_2^3$ \( 1 - T^{4} + T^{8} \)
89$C_2^2$ \( ( 1 + T^{4} )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.353983810850964368888156806829, −8.122050644798931139573399530374, −7.73768074330630743817850565657, −7.58874656069789216065624730099, −7.36313114954289662332727941628, −6.95329677180448468545439805557, −6.90576961626624250002864950432, −6.74305470865466984333616645250, −6.34078008816720197084693177101, −6.17306625928658912296584275359, −5.94129394461114701075032964697, −5.20212322128511737537263313873, −5.07640945539313864995736517812, −4.95121193538855816691733734501, −4.85370867393979454556579685243, −4.71388316553114415104045157819, −4.14131322971884695454873142521, −3.78348720928138463962681262861, −3.64572877319623334347323177999, −2.80006230187750664070888616745, −2.79685177606582793573701173399, −2.59097517581282865672808478937, −2.11170076498663153757087653620, −1.92571696198638370433387376998, −0.906237298384295704270118633130, 0.906237298384295704270118633130, 1.92571696198638370433387376998, 2.11170076498663153757087653620, 2.59097517581282865672808478937, 2.79685177606582793573701173399, 2.80006230187750664070888616745, 3.64572877319623334347323177999, 3.78348720928138463962681262861, 4.14131322971884695454873142521, 4.71388316553114415104045157819, 4.85370867393979454556579685243, 4.95121193538855816691733734501, 5.07640945539313864995736517812, 5.20212322128511737537263313873, 5.94129394461114701075032964697, 6.17306625928658912296584275359, 6.34078008816720197084693177101, 6.74305470865466984333616645250, 6.90576961626624250002864950432, 6.95329677180448468545439805557, 7.36313114954289662332727941628, 7.58874656069789216065624730099, 7.73768074330630743817850565657, 8.122050644798931139573399530374, 8.353983810850964368888156806829

Graph of the $Z$-function along the critical line