Properties

Label 2-430-43.10-c1-0-1
Degree $2$
Conductor $430$
Sign $-0.893 - 0.448i$
Analytic cond. $3.43356$
Root an. cond. $1.85298$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.222 + 0.974i)2-s + (−1.02 − 0.947i)3-s + (−0.900 + 0.433i)4-s + (−0.988 + 0.149i)5-s + (0.696 − 1.20i)6-s + (2.13 + 3.69i)7-s + (−0.623 − 0.781i)8-s + (−0.0790 − 1.05i)9-s + (−0.365 − 0.930i)10-s + (−3.17 − 1.52i)11-s + (1.33 + 0.410i)12-s + (−1.57 + 4.00i)13-s + (−3.12 + 2.89i)14-s + (1.15 + 0.785i)15-s + (0.623 − 0.781i)16-s + (−2.00 − 0.302i)17-s + ⋯
L(s)  = 1  + (0.157 + 0.689i)2-s + (−0.589 − 0.547i)3-s + (−0.450 + 0.216i)4-s + (−0.442 + 0.0666i)5-s + (0.284 − 0.492i)6-s + (0.805 + 1.39i)7-s + (−0.220 − 0.276i)8-s + (−0.0263 − 0.351i)9-s + (−0.115 − 0.294i)10-s + (−0.956 − 0.460i)11-s + (0.384 + 0.118i)12-s + (−0.435 + 1.11i)13-s + (−0.834 + 0.774i)14-s + (0.297 + 0.202i)15-s + (0.155 − 0.195i)16-s + (−0.486 − 0.0732i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.893 - 0.448i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(430\)    =    \(2 \cdot 5 \cdot 43\)
Sign: $-0.893 - 0.448i$
Analytic conductor: \(3.43356\)
Root analytic conductor: \(1.85298\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{430} (311, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 430,\ (\ :1/2),\ -0.893 - 0.448i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.148417 + 0.627235i\)
\(L(\frac12)\) \(\approx\) \(0.148417 + 0.627235i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.222 - 0.974i)T \)
5 \( 1 + (0.988 - 0.149i)T \)
43 \( 1 + (-6.55 + 0.184i)T \)
good3 \( 1 + (1.02 + 0.947i)T + (0.224 + 2.99i)T^{2} \)
7 \( 1 + (-2.13 - 3.69i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (3.17 + 1.52i)T + (6.85 + 8.60i)T^{2} \)
13 \( 1 + (1.57 - 4.00i)T + (-9.52 - 8.84i)T^{2} \)
17 \( 1 + (2.00 + 0.302i)T + (16.2 + 5.01i)T^{2} \)
19 \( 1 + (0.541 - 7.23i)T + (-18.7 - 2.83i)T^{2} \)
23 \( 1 + (-0.139 + 0.0951i)T + (8.40 - 21.4i)T^{2} \)
29 \( 1 + (7.42 - 6.88i)T + (2.16 - 28.9i)T^{2} \)
31 \( 1 + (6.29 + 1.94i)T + (25.6 + 17.4i)T^{2} \)
37 \( 1 + (-0.391 + 0.678i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-1.04 - 4.59i)T + (-36.9 + 17.7i)T^{2} \)
47 \( 1 + (-10.2 + 4.91i)T + (29.3 - 36.7i)T^{2} \)
53 \( 1 + (4.91 + 12.5i)T + (-38.8 + 36.0i)T^{2} \)
59 \( 1 + (-4.29 + 5.38i)T + (-13.1 - 57.5i)T^{2} \)
61 \( 1 + (-3.15 + 0.971i)T + (50.4 - 34.3i)T^{2} \)
67 \( 1 + (0.443 - 5.91i)T + (-66.2 - 9.98i)T^{2} \)
71 \( 1 + (-13.4 - 9.15i)T + (25.9 + 66.0i)T^{2} \)
73 \( 1 + (1.33 - 3.39i)T + (-53.5 - 49.6i)T^{2} \)
79 \( 1 + (6.25 + 10.8i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (-12.7 - 11.8i)T + (6.20 + 82.7i)T^{2} \)
89 \( 1 + (6.95 + 6.45i)T + (6.65 + 88.7i)T^{2} \)
97 \( 1 + (1.49 + 0.719i)T + (60.4 + 75.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64754918727537459825570277382, −11.00297115706795037235749661660, −9.436790501689041580633927804994, −8.635263972402337516117971290822, −7.77860942396316702902790039256, −6.86203685423139873657927613096, −5.74984423068741011361488165530, −5.26224570204374365690158115523, −3.79699690178486777795106597825, −2.03864149966129967294863051107, 0.40533747058377246747357597623, 2.43475245478083032704773478767, 4.05941136992874009867708739400, 4.73142507132852949721206568088, 5.52236854073856926417754762551, 7.39956449135361601987765249794, 7.79784835810932464131754786995, 9.237482069307579826548852015684, 10.35478293242689797322086584762, 10.90049939759401024893076697264

Graph of the $Z$-function along the critical line