Properties

Label 2-430-43.14-c1-0-2
Degree $2$
Conductor $430$
Sign $0.966 - 0.256i$
Analytic cond. $3.43356$
Root an. cond. $1.85298$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.900 + 0.433i)2-s + (−0.124 − 1.66i)3-s + (0.623 − 0.781i)4-s + (−0.955 + 0.294i)5-s + (0.834 + 1.44i)6-s + (−1.34 + 2.32i)7-s + (−0.222 + 0.974i)8-s + (0.215 − 0.0324i)9-s + (0.733 − 0.680i)10-s + (2.10 + 2.63i)11-s + (−1.37 − 0.939i)12-s + (1.60 + 1.48i)13-s + (0.200 − 2.67i)14-s + (0.609 + 1.55i)15-s + (−0.222 − 0.974i)16-s + (1.17 + 0.363i)17-s + ⋯
L(s)  = 1  + (−0.637 + 0.306i)2-s + (−0.0719 − 0.960i)3-s + (0.311 − 0.390i)4-s + (−0.427 + 0.131i)5-s + (0.340 + 0.589i)6-s + (−0.507 + 0.879i)7-s + (−0.0786 + 0.344i)8-s + (0.0717 − 0.0108i)9-s + (0.231 − 0.215i)10-s + (0.633 + 0.794i)11-s + (−0.397 − 0.271i)12-s + (0.444 + 0.412i)13-s + (0.0536 − 0.715i)14-s + (0.157 + 0.400i)15-s + (−0.0556 − 0.243i)16-s + (0.285 + 0.0880i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.966 - 0.256i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.966 - 0.256i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(430\)    =    \(2 \cdot 5 \cdot 43\)
Sign: $0.966 - 0.256i$
Analytic conductor: \(3.43356\)
Root analytic conductor: \(1.85298\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{430} (401, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 430,\ (\ :1/2),\ 0.966 - 0.256i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.950134 + 0.123712i\)
\(L(\frac12)\) \(\approx\) \(0.950134 + 0.123712i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.900 - 0.433i)T \)
5 \( 1 + (0.955 - 0.294i)T \)
43 \( 1 + (-5.44 - 3.65i)T \)
good3 \( 1 + (0.124 + 1.66i)T + (-2.96 + 0.447i)T^{2} \)
7 \( 1 + (1.34 - 2.32i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-2.10 - 2.63i)T + (-2.44 + 10.7i)T^{2} \)
13 \( 1 + (-1.60 - 1.48i)T + (0.971 + 12.9i)T^{2} \)
17 \( 1 + (-1.17 - 0.363i)T + (14.0 + 9.57i)T^{2} \)
19 \( 1 + (-3.67 - 0.553i)T + (18.1 + 5.60i)T^{2} \)
23 \( 1 + (-0.622 + 1.58i)T + (-16.8 - 15.6i)T^{2} \)
29 \( 1 + (-0.669 + 8.93i)T + (-28.6 - 4.32i)T^{2} \)
31 \( 1 + (-6.32 - 4.31i)T + (11.3 + 28.8i)T^{2} \)
37 \( 1 + (-1.55 - 2.70i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-0.414 + 0.199i)T + (25.5 - 32.0i)T^{2} \)
47 \( 1 + (5.66 - 7.10i)T + (-10.4 - 45.8i)T^{2} \)
53 \( 1 + (5.47 - 5.07i)T + (3.96 - 52.8i)T^{2} \)
59 \( 1 + (-2.08 - 9.13i)T + (-53.1 + 25.5i)T^{2} \)
61 \( 1 + (-5.77 + 3.93i)T + (22.2 - 56.7i)T^{2} \)
67 \( 1 + (-2.99 - 0.451i)T + (64.0 + 19.7i)T^{2} \)
71 \( 1 + (-2.21 - 5.63i)T + (-52.0 + 48.2i)T^{2} \)
73 \( 1 + (3.84 + 3.57i)T + (5.45 + 72.7i)T^{2} \)
79 \( 1 + (2.99 - 5.18i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (0.503 + 6.72i)T + (-82.0 + 12.3i)T^{2} \)
89 \( 1 + (0.220 + 2.93i)T + (-88.0 + 13.2i)T^{2} \)
97 \( 1 + (2.10 + 2.64i)T + (-21.5 + 94.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.42948756428825888767073528524, −10.01902078375272670039789673483, −9.374824705324951925484071406430, −8.306576787124111373812890918296, −7.50424158200531259057605233674, −6.61450449342441777342802468854, −6.00021129562601058413184378306, −4.38754062097920959030187151588, −2.69264900722469589220708438373, −1.28066283610278780939296702674, 0.948616167709183787038569402707, 3.33042675814682900037211033555, 3.87193114256676161748203768032, 5.20094793258098175055615947000, 6.61935930070751088153108071560, 7.56169805082469039581094830834, 8.614481995174253737174452930710, 9.496836857430154134764682028541, 10.18690549430427821455085255953, 10.95229527543603993235148956131

Graph of the $Z$-function along the critical line