Properties

Label 2-430-43.25-c1-0-8
Degree $2$
Conductor $430$
Sign $-0.568 + 0.822i$
Analytic cond. $3.43356$
Root an. cond. $1.85298$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.900 − 0.433i)2-s + (−0.993 − 0.677i)3-s + (0.623 + 0.781i)4-s + (0.733 − 0.680i)5-s + (0.601 + 1.04i)6-s + (−0.895 + 1.55i)7-s + (−0.222 − 0.974i)8-s + (−0.567 − 1.44i)9-s + (−0.955 + 0.294i)10-s + (1.01 − 1.26i)11-s + (−0.0898 − 1.19i)12-s + (3.87 + 1.19i)13-s + (1.47 − 1.00i)14-s + (−1.18 + 0.179i)15-s + (−0.222 + 0.974i)16-s + (−4.64 − 4.30i)17-s + ⋯
L(s)  = 1  + (−0.637 − 0.306i)2-s + (−0.573 − 0.391i)3-s + (0.311 + 0.390i)4-s + (0.327 − 0.304i)5-s + (0.245 + 0.425i)6-s + (−0.338 + 0.586i)7-s + (−0.0786 − 0.344i)8-s + (−0.189 − 0.482i)9-s + (−0.302 + 0.0932i)10-s + (0.304 − 0.382i)11-s + (−0.0259 − 0.346i)12-s + (1.07 + 0.331i)13-s + (0.395 − 0.269i)14-s + (−0.306 + 0.0462i)15-s + (−0.0556 + 0.243i)16-s + (−1.12 − 1.04i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.568 + 0.822i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.568 + 0.822i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(430\)    =    \(2 \cdot 5 \cdot 43\)
Sign: $-0.568 + 0.822i$
Analytic conductor: \(3.43356\)
Root analytic conductor: \(1.85298\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{430} (111, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 430,\ (\ :1/2),\ -0.568 + 0.822i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.314199 - 0.599142i\)
\(L(\frac12)\) \(\approx\) \(0.314199 - 0.599142i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.900 + 0.433i)T \)
5 \( 1 + (-0.733 + 0.680i)T \)
43 \( 1 + (6.48 + 0.964i)T \)
good3 \( 1 + (0.993 + 0.677i)T + (1.09 + 2.79i)T^{2} \)
7 \( 1 + (0.895 - 1.55i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-1.01 + 1.26i)T + (-2.44 - 10.7i)T^{2} \)
13 \( 1 + (-3.87 - 1.19i)T + (10.7 + 7.32i)T^{2} \)
17 \( 1 + (4.64 + 4.30i)T + (1.27 + 16.9i)T^{2} \)
19 \( 1 + (-1.64 + 4.19i)T + (-13.9 - 12.9i)T^{2} \)
23 \( 1 + (4.73 + 0.713i)T + (21.9 + 6.77i)T^{2} \)
29 \( 1 + (-5.04 + 3.43i)T + (10.5 - 26.9i)T^{2} \)
31 \( 1 + (0.0732 + 0.977i)T + (-30.6 + 4.62i)T^{2} \)
37 \( 1 + (4.55 + 7.88i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (5.81 + 2.80i)T + (25.5 + 32.0i)T^{2} \)
47 \( 1 + (7.18 + 9.01i)T + (-10.4 + 45.8i)T^{2} \)
53 \( 1 + (-7.40 + 2.28i)T + (43.7 - 29.8i)T^{2} \)
59 \( 1 + (0.341 - 1.49i)T + (-53.1 - 25.5i)T^{2} \)
61 \( 1 + (-0.840 + 11.2i)T + (-60.3 - 9.09i)T^{2} \)
67 \( 1 + (4.98 - 12.7i)T + (-49.1 - 45.5i)T^{2} \)
71 \( 1 + (-12.4 + 1.87i)T + (67.8 - 20.9i)T^{2} \)
73 \( 1 + (-14.1 - 4.37i)T + (60.3 + 41.1i)T^{2} \)
79 \( 1 + (3.15 - 5.46i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-9.48 - 6.46i)T + (30.3 + 77.2i)T^{2} \)
89 \( 1 + (-3.21 - 2.19i)T + (32.5 + 82.8i)T^{2} \)
97 \( 1 + (0.162 - 0.203i)T + (-21.5 - 94.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.06747945232154083079099772081, −9.813965692969240481261200374838, −8.993536463931282299626205606284, −8.478136195214044491007039417444, −6.87424011517095237600075017708, −6.36863530295795380662582712498, −5.25795512923730758427291649872, −3.66310461763277189275222430639, −2.21792565094453968856473821622, −0.57147598044164860495339141134, 1.69058232150181016088642182537, 3.55010095059108480221248772177, 4.85105363344463217442469085628, 6.10747883635836062793714446255, 6.59557267961808553953777448567, 7.937560640792895917743199480439, 8.668188620530832832367982036925, 10.03408495183803332652858982275, 10.34930191423673614644003991478, 11.13829629426406517603614421966

Graph of the $Z$-function along the critical line