Properties

Label 2-430-43.14-c1-0-14
Degree $2$
Conductor $430$
Sign $-0.811 - 0.584i$
Analytic cond. $3.43356$
Root an. cond. $1.85298$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.900 + 0.433i)2-s + (−0.234 − 3.13i)3-s + (0.623 − 0.781i)4-s + (0.955 − 0.294i)5-s + (1.56 + 2.71i)6-s + (−2.53 + 4.38i)7-s + (−0.222 + 0.974i)8-s + (−6.78 + 1.02i)9-s + (−0.733 + 0.680i)10-s + (−2.91 − 3.65i)11-s + (−2.59 − 1.76i)12-s + (1.14 + 1.06i)13-s + (0.378 − 5.04i)14-s + (−1.14 − 2.92i)15-s + (−0.222 − 0.974i)16-s + (−3.80 − 1.17i)17-s + ⋯
L(s)  = 1  + (−0.637 + 0.306i)2-s + (−0.135 − 1.80i)3-s + (0.311 − 0.390i)4-s + (0.427 − 0.131i)5-s + (0.640 + 1.10i)6-s + (−0.956 + 1.65i)7-s + (−0.0786 + 0.344i)8-s + (−2.26 + 0.340i)9-s + (−0.231 + 0.215i)10-s + (−0.878 − 1.10i)11-s + (−0.748 − 0.510i)12-s + (0.318 + 0.295i)13-s + (0.101 − 1.34i)14-s + (−0.296 − 0.754i)15-s + (−0.0556 − 0.243i)16-s + (−0.922 − 0.284i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.811 - 0.584i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.811 - 0.584i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(430\)    =    \(2 \cdot 5 \cdot 43\)
Sign: $-0.811 - 0.584i$
Analytic conductor: \(3.43356\)
Root analytic conductor: \(1.85298\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{430} (401, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 430,\ (\ :1/2),\ -0.811 - 0.584i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0411837 + 0.127540i\)
\(L(\frac12)\) \(\approx\) \(0.0411837 + 0.127540i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.900 - 0.433i)T \)
5 \( 1 + (-0.955 + 0.294i)T \)
43 \( 1 + (-0.631 - 6.52i)T \)
good3 \( 1 + (0.234 + 3.13i)T + (-2.96 + 0.447i)T^{2} \)
7 \( 1 + (2.53 - 4.38i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (2.91 + 3.65i)T + (-2.44 + 10.7i)T^{2} \)
13 \( 1 + (-1.14 - 1.06i)T + (0.971 + 12.9i)T^{2} \)
17 \( 1 + (3.80 + 1.17i)T + (14.0 + 9.57i)T^{2} \)
19 \( 1 + (5.98 + 0.902i)T + (18.1 + 5.60i)T^{2} \)
23 \( 1 + (1.88 - 4.81i)T + (-16.8 - 15.6i)T^{2} \)
29 \( 1 + (-0.0458 + 0.612i)T + (-28.6 - 4.32i)T^{2} \)
31 \( 1 + (2.41 + 1.64i)T + (11.3 + 28.8i)T^{2} \)
37 \( 1 + (0.518 + 0.898i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-8.48 + 4.08i)T + (25.5 - 32.0i)T^{2} \)
47 \( 1 + (-4.49 + 5.63i)T + (-10.4 - 45.8i)T^{2} \)
53 \( 1 + (-0.342 + 0.317i)T + (3.96 - 52.8i)T^{2} \)
59 \( 1 + (-0.941 - 4.12i)T + (-53.1 + 25.5i)T^{2} \)
61 \( 1 + (-2.43 + 1.66i)T + (22.2 - 56.7i)T^{2} \)
67 \( 1 + (12.7 + 1.91i)T + (64.0 + 19.7i)T^{2} \)
71 \( 1 + (5.62 + 14.3i)T + (-52.0 + 48.2i)T^{2} \)
73 \( 1 + (-2.46 - 2.28i)T + (5.45 + 72.7i)T^{2} \)
79 \( 1 + (0.941 - 1.63i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (0.289 + 3.86i)T + (-82.0 + 12.3i)T^{2} \)
89 \( 1 + (-0.485 - 6.47i)T + (-88.0 + 13.2i)T^{2} \)
97 \( 1 + (9.71 + 12.1i)T + (-21.5 + 94.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79037134874976992400071927591, −9.214241477324984908352642034654, −8.747176133691891971018038145135, −7.924772231708357636845742063869, −6.76408837040192266847378045292, −6.00849942665925532719053550837, −5.63754689388544805770537117928, −2.75872619380047124797069000796, −2.02473044621198554783294085113, −0.095922139431005724173148923176, 2.65626495191934993744819153036, 3.97281366232197857261413216648, 4.50398557732012574466609567265, 6.06591497409248440694883637763, 7.09606427572049289944580247713, 8.391349166852973477915934637075, 9.404282174496972372843419924371, 10.08121675808787737589214638714, 10.68280936689299554525828267019, 10.81353560316897287956975152642

Graph of the $Z$-function along the critical line