Properties

Label 8-430e4-1.1-c1e4-0-0
Degree $8$
Conductor $34188010000$
Sign $1$
Analytic cond. $138.989$
Root an. cond. $1.85298$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·11-s + 8·13-s − 16-s + 20·17-s − 20·23-s − 8·25-s + 32·31-s − 48·41-s − 12·43-s − 20·47-s − 8·67-s + 14·81-s + 24·83-s + 36·97-s + 8·101-s − 36·103-s − 48·107-s + 116·121-s + 127-s + 131-s + 137-s + 139-s − 128·143-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  − 4.82·11-s + 2.21·13-s − 1/4·16-s + 4.85·17-s − 4.17·23-s − 8/5·25-s + 5.74·31-s − 7.49·41-s − 1.82·43-s − 2.91·47-s − 0.977·67-s + 14/9·81-s + 2.63·83-s + 3.65·97-s + 0.796·101-s − 3.54·103-s − 4.64·107-s + 10.5·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 10.7·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 43^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 5^{4} \cdot 43^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 5^{4} \cdot 43^{4}\)
Sign: $1$
Analytic conductor: \(138.989\)
Root analytic conductor: \(1.85298\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 5^{4} \cdot 43^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.5087849001\)
\(L(\frac12)\) \(\approx\) \(0.5087849001\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 + T^{4} \)
5$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 12 T + 72 T^{2} + 12 p T^{3} + p^{2} T^{4} \)
good3$C_2^2$$\times$$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} ) \)
7$C_2^3$ \( 1 - 94 T^{4} + p^{4} T^{8} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{4} \)
13$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 - 2 T + p T^{2} )^{2} \)
19$C_2^2$ \( ( 1 + 20 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + 40 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
37$C_2^3$ \( 1 - 1294 T^{4} + p^{4} T^{8} \)
41$C_2$ \( ( 1 + 12 T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 - p T^{2} )^{4} \)
61$C_2^2$ \( ( 1 - 104 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$$\times$$C_2^2$ \( ( 1 - 24 T + 288 T^{2} - 24 p T^{3} + p^{2} T^{4} )( 1 + 24 T + 288 T^{2} + 24 p T^{3} + p^{2} T^{4} ) \)
79$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 12 T + 72 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 18 T + 162 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.094629354658803420988745614473, −7.966949031932369193881891996047, −7.84589382009722754857249333004, −7.79414139429600593637780892335, −7.22267585827641568428322435734, −6.61535021826330573440236830483, −6.39588803614483845672849229797, −6.29776237429667155659789947250, −6.27822416842115402773220930161, −5.72050041536769906331092709983, −5.33432562851094761789494607335, −5.31088522474708337891079453525, −5.14980432561787772450831420707, −4.95197989284377843706270277186, −4.65475771352574560352280897667, −3.90631357692479930178536478427, −3.75415106349849940817914898747, −3.32038582781388535323135462404, −3.28756673497654838920593747001, −2.87449900030571154165815576195, −2.76094361607858545763032868598, −1.89510258415444756031424330602, −1.79954589487102156967742689247, −1.30918334681467185394194591335, −0.25656437065591258210781784916, 0.25656437065591258210781784916, 1.30918334681467185394194591335, 1.79954589487102156967742689247, 1.89510258415444756031424330602, 2.76094361607858545763032868598, 2.87449900030571154165815576195, 3.28756673497654838920593747001, 3.32038582781388535323135462404, 3.75415106349849940817914898747, 3.90631357692479930178536478427, 4.65475771352574560352280897667, 4.95197989284377843706270277186, 5.14980432561787772450831420707, 5.31088522474708337891079453525, 5.33432562851094761789494607335, 5.72050041536769906331092709983, 6.27822416842115402773220930161, 6.29776237429667155659789947250, 6.39588803614483845672849229797, 6.61535021826330573440236830483, 7.22267585827641568428322435734, 7.79414139429600593637780892335, 7.84589382009722754857249333004, 7.966949031932369193881891996047, 8.094629354658803420988745614473

Graph of the $Z$-function along the critical line