Properties

Label 2-43-43.6-c7-0-12
Degree $2$
Conductor $43$
Sign $0.804 + 0.593i$
Analytic cond. $13.4325$
Root an. cond. $3.66504$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.76·2-s + (25.9 − 44.8i)3-s − 82.2·4-s + (−60.8 + 105. i)5-s + (−175. + 303. i)6-s + (496. + 860. i)7-s + 1.42e3·8-s + (−249. − 432. i)9-s + (411. − 712. i)10-s + 3.26e3·11-s + (−2.13e3 + 3.69e3i)12-s + (−5.36e3 − 9.30e3i)13-s + (−3.35e3 − 5.81e3i)14-s + (3.15e3 + 5.46e3i)15-s + 900.·16-s + (−230. − 399. i)17-s + ⋯
L(s)  = 1  − 0.598·2-s + (0.554 − 0.959i)3-s − 0.642·4-s + (−0.217 + 0.376i)5-s + (−0.331 + 0.573i)6-s + (0.547 + 0.947i)7-s + 0.982·8-s + (−0.114 − 0.197i)9-s + (0.130 − 0.225i)10-s + 0.739·11-s + (−0.355 + 0.616i)12-s + (−0.677 − 1.17i)13-s + (−0.327 − 0.566i)14-s + (0.241 + 0.417i)15-s + 0.0549·16-s + (−0.0113 − 0.0197i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.804 + 0.593i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.804 + 0.593i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $0.804 + 0.593i$
Analytic conductor: \(13.4325\)
Root analytic conductor: \(3.66504\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (6, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :7/2),\ 0.804 + 0.593i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.35370 - 0.445463i\)
\(L(\frac12)\) \(\approx\) \(1.35370 - 0.445463i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 + (-5.18e5 + 5.54e4i)T \)
good2 \( 1 + 6.76T + 128T^{2} \)
3 \( 1 + (-25.9 + 44.8i)T + (-1.09e3 - 1.89e3i)T^{2} \)
5 \( 1 + (60.8 - 105. i)T + (-3.90e4 - 6.76e4i)T^{2} \)
7 \( 1 + (-496. - 860. i)T + (-4.11e5 + 7.13e5i)T^{2} \)
11 \( 1 - 3.26e3T + 1.94e7T^{2} \)
13 \( 1 + (5.36e3 + 9.30e3i)T + (-3.13e7 + 5.43e7i)T^{2} \)
17 \( 1 + (230. + 399. i)T + (-2.05e8 + 3.55e8i)T^{2} \)
19 \( 1 + (-1.13e4 + 1.96e4i)T + (-4.46e8 - 7.74e8i)T^{2} \)
23 \( 1 + (-4.71e4 + 8.16e4i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (-9.24e4 - 1.60e5i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 + (-1.26e5 + 2.19e5i)T + (-1.37e10 - 2.38e10i)T^{2} \)
37 \( 1 + (2.03e5 - 3.52e5i)T + (-4.74e10 - 8.22e10i)T^{2} \)
41 \( 1 + 2.44e5T + 1.94e11T^{2} \)
47 \( 1 - 9.14e5T + 5.06e11T^{2} \)
53 \( 1 + (-1.62e5 + 2.81e5i)T + (-5.87e11 - 1.01e12i)T^{2} \)
59 \( 1 - 4.16e5T + 2.48e12T^{2} \)
61 \( 1 + (3.41e4 + 5.91e4i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (7.47e5 - 1.29e6i)T + (-3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + (1.87e6 + 3.25e6i)T + (-4.54e12 + 7.87e12i)T^{2} \)
73 \( 1 + (-6.88e5 - 1.19e6i)T + (-5.52e12 + 9.56e12i)T^{2} \)
79 \( 1 + (-1.53e6 - 2.66e6i)T + (-9.60e12 + 1.66e13i)T^{2} \)
83 \( 1 + (-4.98e5 + 8.63e5i)T + (-1.35e13 - 2.35e13i)T^{2} \)
89 \( 1 + (4.24e6 - 7.35e6i)T + (-2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 - 1.03e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.31989320192636544215180918749, −13.15458761614554230493215760666, −12.13856347156112145302561793356, −10.55814479713906760002292398082, −9.007765430411223128577522008758, −8.175461264604882524700001766471, −7.04578735945939199774761309626, −4.98682508286170268755531421369, −2.67853024414352393088374326893, −0.976668521804811463267301212007, 1.11203895866694688114913508018, 3.92600160354270251968416885846, 4.68087597690700975378804782917, 7.31597627911337285590464697651, 8.693511240337366539634562907923, 9.515253656947101125907137864833, 10.49356170244517911621135381342, 12.05525583544080580818752106988, 13.88777103139867786950298058442, 14.36103856442884443831963392699

Graph of the $Z$-function along the critical line