Properties

Label 2-43-43.6-c7-0-5
Degree $2$
Conductor $43$
Sign $-0.411 - 0.911i$
Analytic cond. $13.4325$
Root an. cond. $3.66504$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 14.0·2-s + (−5.97 + 10.3i)3-s + 68.7·4-s + (−104. + 181. i)5-s + (−83.7 + 145. i)6-s + (163. + 282. i)7-s − 831.·8-s + (1.02e3 + 1.77e3i)9-s + (−1.47e3 + 2.54e3i)10-s − 5.35e3·11-s + (−410. + 710. i)12-s + (4.67e3 + 8.09e3i)13-s + (2.28e3 + 3.96e3i)14-s + (−1.25e3 − 2.17e3i)15-s − 2.04e4·16-s + (3.18e3 + 5.51e3i)17-s + ⋯
L(s)  = 1  + 1.23·2-s + (−0.127 + 0.221i)3-s + 0.536·4-s + (−0.375 + 0.650i)5-s + (−0.158 + 0.274i)6-s + (0.179 + 0.311i)7-s − 0.574·8-s + (0.467 + 0.809i)9-s + (−0.465 + 0.806i)10-s − 1.21·11-s + (−0.0685 + 0.118i)12-s + (0.589 + 1.02i)13-s + (0.222 + 0.386i)14-s + (−0.0958 − 0.166i)15-s − 1.24·16-s + (0.157 + 0.272i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.411 - 0.911i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.411 - 0.911i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $-0.411 - 0.911i$
Analytic conductor: \(13.4325\)
Root analytic conductor: \(3.66504\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (6, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :7/2),\ -0.411 - 0.911i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.23133 + 1.90610i\)
\(L(\frac12)\) \(\approx\) \(1.23133 + 1.90610i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 + (4.79e5 + 2.05e5i)T \)
good2 \( 1 - 14.0T + 128T^{2} \)
3 \( 1 + (5.97 - 10.3i)T + (-1.09e3 - 1.89e3i)T^{2} \)
5 \( 1 + (104. - 181. i)T + (-3.90e4 - 6.76e4i)T^{2} \)
7 \( 1 + (-163. - 282. i)T + (-4.11e5 + 7.13e5i)T^{2} \)
11 \( 1 + 5.35e3T + 1.94e7T^{2} \)
13 \( 1 + (-4.67e3 - 8.09e3i)T + (-3.13e7 + 5.43e7i)T^{2} \)
17 \( 1 + (-3.18e3 - 5.51e3i)T + (-2.05e8 + 3.55e8i)T^{2} \)
19 \( 1 + (1.05e4 - 1.82e4i)T + (-4.46e8 - 7.74e8i)T^{2} \)
23 \( 1 + (-5.42e4 + 9.39e4i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (-2.01e4 - 3.48e4i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 + (-8.49e4 + 1.47e5i)T + (-1.37e10 - 2.38e10i)T^{2} \)
37 \( 1 + (2.41e5 - 4.17e5i)T + (-4.74e10 - 8.22e10i)T^{2} \)
41 \( 1 - 5.82e5T + 1.94e11T^{2} \)
47 \( 1 - 7.86e5T + 5.06e11T^{2} \)
53 \( 1 + (-8.73e5 + 1.51e6i)T + (-5.87e11 - 1.01e12i)T^{2} \)
59 \( 1 + 1.21e6T + 2.48e12T^{2} \)
61 \( 1 + (-2.37e5 - 4.11e5i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (1.57e6 - 2.72e6i)T + (-3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + (-2.32e6 - 4.01e6i)T + (-4.54e12 + 7.87e12i)T^{2} \)
73 \( 1 + (-7.72e5 - 1.33e6i)T + (-5.52e12 + 9.56e12i)T^{2} \)
79 \( 1 + (-2.28e5 - 3.95e5i)T + (-9.60e12 + 1.66e13i)T^{2} \)
83 \( 1 + (3.78e6 - 6.55e6i)T + (-1.35e13 - 2.35e13i)T^{2} \)
89 \( 1 + (3.08e6 - 5.34e6i)T + (-2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 - 1.50e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.76084124973445982755729706566, −13.63532283130063769766727739515, −12.70655535319326264201552255849, −11.40081512761735277723229425797, −10.37963551534940037385122504121, −8.450977752852961210992339235841, −6.79851860966498737150323593402, −5.30155690303465642662932077113, −4.13003592457881034264054491713, −2.53665841424292517499303463158, 0.65125364470103533425985540727, 3.20251500124173609732320617486, 4.62610750895252822880905865189, 5.77398298067106150437989232910, 7.46277233925288665493055477248, 9.017756785880466779693805080979, 10.79289733472701283793669816662, 12.22364963675980059710065101478, 12.92068277850169541530261846772, 13.76816786327809635342956361513

Graph of the $Z$-function along the critical line