Properties

Label 2-43-43.36-c7-0-1
Degree $2$
Conductor $43$
Sign $-0.755 - 0.654i$
Analytic cond. $13.4325$
Root an. cond. $3.66504$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11.0·2-s + (−18.5 − 32.1i)3-s − 6.00·4-s + (52.2 + 90.4i)5-s + (−204. − 354. i)6-s + (−372. + 645. i)7-s − 1.48e3·8-s + (405. − 701. i)9-s + (576. + 999. i)10-s − 2.76e3·11-s + (111. + 192. i)12-s + (−5.34e3 + 9.25e3i)13-s + (−4.11e3 + 7.13e3i)14-s + (1.93e3 − 3.35e3i)15-s − 1.55e4·16-s + (−1.48e4 + 2.57e4i)17-s + ⋯
L(s)  = 1  + 0.976·2-s + (−0.396 − 0.687i)3-s − 0.0469·4-s + (0.186 + 0.323i)5-s + (−0.387 − 0.670i)6-s + (−0.410 + 0.711i)7-s − 1.02·8-s + (0.185 − 0.320i)9-s + (0.182 + 0.315i)10-s − 0.626·11-s + (0.0186 + 0.0322i)12-s + (−0.674 + 1.16i)13-s + (−0.401 + 0.694i)14-s + (0.148 − 0.256i)15-s − 0.950·16-s + (−0.732 + 1.26i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.755 - 0.654i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.755 - 0.654i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $-0.755 - 0.654i$
Analytic conductor: \(13.4325\)
Root analytic conductor: \(3.66504\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (36, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :7/2),\ -0.755 - 0.654i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.175518 + 0.470840i\)
\(L(\frac12)\) \(\approx\) \(0.175518 + 0.470840i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 + (5.97e4 + 5.17e5i)T \)
good2 \( 1 - 11.0T + 128T^{2} \)
3 \( 1 + (18.5 + 32.1i)T + (-1.09e3 + 1.89e3i)T^{2} \)
5 \( 1 + (-52.2 - 90.4i)T + (-3.90e4 + 6.76e4i)T^{2} \)
7 \( 1 + (372. - 645. i)T + (-4.11e5 - 7.13e5i)T^{2} \)
11 \( 1 + 2.76e3T + 1.94e7T^{2} \)
13 \( 1 + (5.34e3 - 9.25e3i)T + (-3.13e7 - 5.43e7i)T^{2} \)
17 \( 1 + (1.48e4 - 2.57e4i)T + (-2.05e8 - 3.55e8i)T^{2} \)
19 \( 1 + (-1.67e4 - 2.89e4i)T + (-4.46e8 + 7.74e8i)T^{2} \)
23 \( 1 + (5.15e4 + 8.92e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (-4.77e4 + 8.27e4i)T + (-8.62e9 - 1.49e10i)T^{2} \)
31 \( 1 + (-2.28e4 - 3.95e4i)T + (-1.37e10 + 2.38e10i)T^{2} \)
37 \( 1 + (4.55e4 + 7.89e4i)T + (-4.74e10 + 8.22e10i)T^{2} \)
41 \( 1 + 8.24e5T + 1.94e11T^{2} \)
47 \( 1 - 1.28e6T + 5.06e11T^{2} \)
53 \( 1 + (-1.52e5 - 2.63e5i)T + (-5.87e11 + 1.01e12i)T^{2} \)
59 \( 1 + 8.50e5T + 2.48e12T^{2} \)
61 \( 1 + (-4.19e4 + 7.27e4i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (6.02e5 + 1.04e6i)T + (-3.03e12 + 5.24e12i)T^{2} \)
71 \( 1 + (2.89e6 - 5.01e6i)T + (-4.54e12 - 7.87e12i)T^{2} \)
73 \( 1 + (1.71e6 - 2.96e6i)T + (-5.52e12 - 9.56e12i)T^{2} \)
79 \( 1 + (1.08e6 - 1.87e6i)T + (-9.60e12 - 1.66e13i)T^{2} \)
83 \( 1 + (1.63e6 + 2.83e6i)T + (-1.35e13 + 2.35e13i)T^{2} \)
89 \( 1 + (-4.99e6 - 8.64e6i)T + (-2.21e13 + 3.83e13i)T^{2} \)
97 \( 1 - 2.52e5T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.64841351507486326721939023530, −13.64764516053579135061909383197, −12.38564074088428909720670675590, −12.10726866361925399982709561531, −10.15102758838848317408679363654, −8.660950061587355013403117018116, −6.68754242347646894849564578947, −5.85135315834583760291102197924, −4.17496845658601367615440120403, −2.32450688725755853712368494824, 0.15240680272900231634654801640, 3.13691983696568160043995111947, 4.73383835045186979169648295795, 5.40418649493544558279129620214, 7.36376146078399918477216314191, 9.340613038592195042868721522279, 10.36750649338436091571940132652, 11.76178598412055537898808511890, 13.26551942113463372438850461579, 13.57189621837348653225053117488

Graph of the $Z$-function along the critical line