Properties

Label 2-43-43.36-c7-0-6
Degree $2$
Conductor $43$
Sign $-0.978 + 0.208i$
Analytic cond. $13.4325$
Root an. cond. $3.66504$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.04·2-s + (46.4 + 80.4i)3-s − 91.4·4-s + (84.4 + 146. i)5-s + (−280. − 486. i)6-s + (−519. + 899. i)7-s + 1.32e3·8-s + (−3.22e3 + 5.58e3i)9-s + (−510. − 883. i)10-s + 2.07e3·11-s + (−4.24e3 − 7.35e3i)12-s + (6.83e3 − 1.18e4i)13-s + (3.13e3 − 5.43e3i)14-s + (−7.84e3 + 1.35e4i)15-s + 3.68e3·16-s + (−1.19e4 + 2.07e4i)17-s + ⋯
L(s)  = 1  − 0.534·2-s + (0.993 + 1.72i)3-s − 0.714·4-s + (0.301 + 0.523i)5-s + (−0.530 − 0.919i)6-s + (−0.572 + 0.990i)7-s + 0.916·8-s + (−1.47 + 2.55i)9-s + (−0.161 − 0.279i)10-s + 0.469·11-s + (−0.709 − 1.22i)12-s + (0.862 − 1.49i)13-s + (0.305 − 0.529i)14-s + (−0.600 + 1.03i)15-s + 0.224·16-s + (−0.590 + 1.02i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.978 + 0.208i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.978 + 0.208i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $-0.978 + 0.208i$
Analytic conductor: \(13.4325\)
Root analytic conductor: \(3.66504\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (36, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :7/2),\ -0.978 + 0.208i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.133678 - 1.26807i\)
\(L(\frac12)\) \(\approx\) \(0.133678 - 1.26807i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 + (4.49e5 + 2.64e5i)T \)
good2 \( 1 + 6.04T + 128T^{2} \)
3 \( 1 + (-46.4 - 80.4i)T + (-1.09e3 + 1.89e3i)T^{2} \)
5 \( 1 + (-84.4 - 146. i)T + (-3.90e4 + 6.76e4i)T^{2} \)
7 \( 1 + (519. - 899. i)T + (-4.11e5 - 7.13e5i)T^{2} \)
11 \( 1 - 2.07e3T + 1.94e7T^{2} \)
13 \( 1 + (-6.83e3 + 1.18e4i)T + (-3.13e7 - 5.43e7i)T^{2} \)
17 \( 1 + (1.19e4 - 2.07e4i)T + (-2.05e8 - 3.55e8i)T^{2} \)
19 \( 1 + (5.44e3 + 9.42e3i)T + (-4.46e8 + 7.74e8i)T^{2} \)
23 \( 1 + (1.81e4 + 3.13e4i)T + (-1.70e9 + 2.94e9i)T^{2} \)
29 \( 1 + (2.49e4 - 4.32e4i)T + (-8.62e9 - 1.49e10i)T^{2} \)
31 \( 1 + (-6.51e4 - 1.12e5i)T + (-1.37e10 + 2.38e10i)T^{2} \)
37 \( 1 + (-2.03e4 - 3.52e4i)T + (-4.74e10 + 8.22e10i)T^{2} \)
41 \( 1 - 2.88e5T + 1.94e11T^{2} \)
47 \( 1 - 6.11e5T + 5.06e11T^{2} \)
53 \( 1 + (-7.11e5 - 1.23e6i)T + (-5.87e11 + 1.01e12i)T^{2} \)
59 \( 1 - 1.19e6T + 2.48e12T^{2} \)
61 \( 1 + (3.76e5 - 6.52e5i)T + (-1.57e12 - 2.72e12i)T^{2} \)
67 \( 1 + (-6.54e5 - 1.13e6i)T + (-3.03e12 + 5.24e12i)T^{2} \)
71 \( 1 + (2.24e6 - 3.88e6i)T + (-4.54e12 - 7.87e12i)T^{2} \)
73 \( 1 + (6.91e5 - 1.19e6i)T + (-5.52e12 - 9.56e12i)T^{2} \)
79 \( 1 + (2.99e6 - 5.19e6i)T + (-9.60e12 - 1.66e13i)T^{2} \)
83 \( 1 + (-8.79e5 - 1.52e6i)T + (-1.35e13 + 2.35e13i)T^{2} \)
89 \( 1 + (2.21e6 + 3.82e6i)T + (-2.21e13 + 3.83e13i)T^{2} \)
97 \( 1 - 1.33e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.16559445238563219312753385810, −14.22407336419434169265394978257, −13.05215302433925280274605615464, −10.68548938118567644357933413198, −10.11079960913751559164527452381, −8.879112298921712816727647706416, −8.419008624145106554239907831918, −5.65008211134078292234193881528, −4.06526354274441943957589519210, −2.77291673690058444035829093024, 0.60165650623552499785219406173, 1.67187697038059964357086606408, 3.85822027208186051353972660865, 6.50615781780927177289212583974, 7.54928480007067677992436353990, 8.845856889418195511682743872851, 9.452623399508678861297897642269, 11.69384195797205024329581738462, 13.25262850583187160602304115043, 13.48579738150589633890116266705

Graph of the $Z$-function along the critical line