# Properties

 Degree $2$ Conductor $43$ Sign $0.863 - 0.504i$ Motivic weight $5$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−4.75 + 5.96i)2-s + (−3.77 − 4.73i)3-s + (−5.82 − 25.5i)4-s + (−49.8 − 24.0i)5-s + 46.1·6-s + 187.·7-s + (−39.9 − 19.2i)8-s + (45.9 − 201. i)9-s + (380. − 183. i)10-s + (−98.0 + 429. i)11-s + (−98.8 + 123. i)12-s + (551. + 265. i)13-s + (−893. + 1.12e3i)14-s + (74.5 + 326. i)15-s + (1.05e3 − 510. i)16-s + (1.02e3 − 494. i)17-s + ⋯
 L(s)  = 1 + (−0.840 + 1.05i)2-s + (−0.242 − 0.303i)3-s + (−0.182 − 0.797i)4-s + (−0.892 − 0.429i)5-s + 0.523·6-s + 1.44·7-s + (−0.220 − 0.106i)8-s + (0.188 − 0.827i)9-s + (1.20 − 0.579i)10-s + (−0.244 + 1.06i)11-s + (−0.198 + 0.248i)12-s + (0.904 + 0.435i)13-s + (−1.21 + 1.52i)14-s + (0.0855 + 0.374i)15-s + (1.03 − 0.498i)16-s + (0.862 − 0.415i)17-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.863 - 0.504i)\, \overline{\Lambda}(6-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.863 - 0.504i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$43$$ Sign: $0.863 - 0.504i$ Motivic weight: $$5$$ Character: $\chi_{43} (4, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 43,\ (\ :5/2),\ 0.863 - 0.504i)$$

## Particular Values

 $$L(3)$$ $$\approx$$ $$0.906843 + 0.245796i$$ $$L(\frac12)$$ $$\approx$$ $$0.906843 + 0.245796i$$ $$L(\frac{7}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad43 $$1 + (1.12e4 - 4.47e3i)T$$
good2 $$1 + (4.75 - 5.96i)T + (-7.12 - 31.1i)T^{2}$$
3 $$1 + (3.77 + 4.73i)T + (-54.0 + 236. i)T^{2}$$
5 $$1 + (49.8 + 24.0i)T + (1.94e3 + 2.44e3i)T^{2}$$
7 $$1 - 187.T + 1.68e4T^{2}$$
11 $$1 + (98.0 - 429. i)T + (-1.45e5 - 6.98e4i)T^{2}$$
13 $$1 + (-551. - 265. i)T + (2.31e5 + 2.90e5i)T^{2}$$
17 $$1 + (-1.02e3 + 494. i)T + (8.85e5 - 1.11e6i)T^{2}$$
19 $$1 + (-459. - 2.01e3i)T + (-2.23e6 + 1.07e6i)T^{2}$$
23 $$1 + (-846. + 3.70e3i)T + (-5.79e6 - 2.79e6i)T^{2}$$
29 $$1 + (-5.09e3 + 6.39e3i)T + (-4.56e6 - 1.99e7i)T^{2}$$
31 $$1 + (-3.39e3 + 4.25e3i)T + (-6.37e6 - 2.79e7i)T^{2}$$
37 $$1 - 1.10e4T + 6.93e7T^{2}$$
41 $$1 + (974. - 1.22e3i)T + (-2.57e7 - 1.12e8i)T^{2}$$
47 $$1 + (-3.17e3 - 1.39e4i)T + (-2.06e8 + 9.95e7i)T^{2}$$
53 $$1 + (1.49e4 - 7.22e3i)T + (2.60e8 - 3.26e8i)T^{2}$$
59 $$1 + (-2.15e4 + 1.03e4i)T + (4.45e8 - 5.58e8i)T^{2}$$
61 $$1 + (1.58e4 + 1.99e4i)T + (-1.87e8 + 8.23e8i)T^{2}$$
67 $$1 + (-1.35e3 - 5.92e3i)T + (-1.21e9 + 5.85e8i)T^{2}$$
71 $$1 + (-5.77e3 - 2.53e4i)T + (-1.62e9 + 7.82e8i)T^{2}$$
73 $$1 + (2.40e4 + 1.15e4i)T + (1.29e9 + 1.62e9i)T^{2}$$
79 $$1 - 2.81e4T + 3.07e9T^{2}$$
83 $$1 + (-1.95e3 - 2.45e3i)T + (-8.76e8 + 3.84e9i)T^{2}$$
89 $$1 + (-6.73e4 - 8.44e4i)T + (-1.24e9 + 5.44e9i)T^{2}$$
97 $$1 + (-2.22e4 + 9.72e4i)T + (-7.73e9 - 3.72e9i)T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$