Properties

Label 2-43-43.4-c5-0-14
Degree $2$
Conductor $43$
Sign $0.583 + 0.812i$
Analytic cond. $6.89650$
Root an. cond. $2.62611$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (5.75 − 7.21i)2-s + (8.62 + 10.8i)3-s + (−11.8 − 51.7i)4-s + (90.5 + 43.6i)5-s + 127.·6-s − 71.2·7-s + (−175. − 84.3i)8-s + (11.4 − 50.3i)9-s + (835. − 402. i)10-s + (−24.3 + 106. i)11-s + (457. − 574. i)12-s + (−693. − 333. i)13-s + (−409. + 513. i)14-s + (309. + 1.35e3i)15-s + (−85.3 + 41.1i)16-s + (−1.30e3 + 630. i)17-s + ⋯
L(s)  = 1  + (1.01 − 1.27i)2-s + (0.553 + 0.693i)3-s + (−0.369 − 1.61i)4-s + (1.62 + 0.780i)5-s + 1.44·6-s − 0.549·7-s + (−0.967 − 0.465i)8-s + (0.0472 − 0.207i)9-s + (2.64 − 1.27i)10-s + (−0.0606 + 0.265i)11-s + (0.917 − 1.15i)12-s + (−1.13 − 0.547i)13-s + (−0.558 + 0.700i)14-s + (0.355 + 1.55i)15-s + (−0.0833 + 0.0401i)16-s + (−1.09 + 0.529i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.583 + 0.812i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.583 + 0.812i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $0.583 + 0.812i$
Analytic conductor: \(6.89650\)
Root analytic conductor: \(2.62611\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :5/2),\ 0.583 + 0.812i)\)

Particular Values

\(L(3)\) \(\approx\) \(3.13487 - 1.60801i\)
\(L(\frac12)\) \(\approx\) \(3.13487 - 1.60801i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 + (5.50e3 + 1.08e4i)T \)
good2 \( 1 + (-5.75 + 7.21i)T + (-7.12 - 31.1i)T^{2} \)
3 \( 1 + (-8.62 - 10.8i)T + (-54.0 + 236. i)T^{2} \)
5 \( 1 + (-90.5 - 43.6i)T + (1.94e3 + 2.44e3i)T^{2} \)
7 \( 1 + 71.2T + 1.68e4T^{2} \)
11 \( 1 + (24.3 - 106. i)T + (-1.45e5 - 6.98e4i)T^{2} \)
13 \( 1 + (693. + 333. i)T + (2.31e5 + 2.90e5i)T^{2} \)
17 \( 1 + (1.30e3 - 630. i)T + (8.85e5 - 1.11e6i)T^{2} \)
19 \( 1 + (314. + 1.37e3i)T + (-2.23e6 + 1.07e6i)T^{2} \)
23 \( 1 + (236. - 1.03e3i)T + (-5.79e6 - 2.79e6i)T^{2} \)
29 \( 1 + (2.65e3 - 3.33e3i)T + (-4.56e6 - 1.99e7i)T^{2} \)
31 \( 1 + (7.83 - 9.82i)T + (-6.37e6 - 2.79e7i)T^{2} \)
37 \( 1 - 1.12e4T + 6.93e7T^{2} \)
41 \( 1 + (1.25e4 - 1.57e4i)T + (-2.57e7 - 1.12e8i)T^{2} \)
47 \( 1 + (-2.11e3 - 9.28e3i)T + (-2.06e8 + 9.95e7i)T^{2} \)
53 \( 1 + (2.90e3 - 1.39e3i)T + (2.60e8 - 3.26e8i)T^{2} \)
59 \( 1 + (-3.85e4 + 1.85e4i)T + (4.45e8 - 5.58e8i)T^{2} \)
61 \( 1 + (2.22e4 + 2.79e4i)T + (-1.87e8 + 8.23e8i)T^{2} \)
67 \( 1 + (9.93e3 + 4.35e4i)T + (-1.21e9 + 5.85e8i)T^{2} \)
71 \( 1 + (-5.05e3 - 2.21e4i)T + (-1.62e9 + 7.82e8i)T^{2} \)
73 \( 1 + (-4.98e4 - 2.39e4i)T + (1.29e9 + 1.62e9i)T^{2} \)
79 \( 1 - 4.53e4T + 3.07e9T^{2} \)
83 \( 1 + (1.08e4 + 1.35e4i)T + (-8.76e8 + 3.84e9i)T^{2} \)
89 \( 1 + (1.02e4 + 1.28e4i)T + (-1.24e9 + 5.44e9i)T^{2} \)
97 \( 1 + (-3.76e3 + 1.65e4i)T + (-7.73e9 - 3.72e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.56202854759305574821785973499, −13.44232365361383973953858825682, −12.73578517250922506589015144046, −11.00871173922667967998948317871, −9.987383491599811069046692645472, −9.457705326059119910097895627261, −6.49057723784695086997284663512, −4.93293041305909833315186136964, −3.21258829552421052311391722244, −2.20523488866171288225215746093, 2.21258643756903817241166594601, 4.75531955892296580183846594458, 5.99722233964472265917832369510, 7.07617441051862577615855861829, 8.549062383886137962382973756091, 9.858167028108855162970807130521, 12.47565804504808848285003185596, 13.32385519063639097473235509744, 13.77388300473306797754648915793, 14.77314664628742504153725740769

Graph of the $Z$-function along the critical line