Properties

Label 2-43-43.4-c5-0-16
Degree $2$
Conductor $43$
Sign $-0.937 - 0.348i$
Analytic cond. $6.89650$
Root an. cond. $2.62611$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.37 − 5.48i)2-s + (−9.64 − 12.0i)3-s + (−3.82 − 16.7i)4-s + (−28.9 − 13.9i)5-s − 108.·6-s − 153.·7-s + (93.5 + 45.0i)8-s + (0.847 − 3.71i)9-s + (−202. + 97.6i)10-s + (−14.7 + 64.7i)11-s + (−165. + 207. i)12-s + (−483. − 232. i)13-s + (−671. + 842. i)14-s + (110. + 483. i)15-s + (1.15e3 − 554. i)16-s + (65.9 − 31.7i)17-s + ⋯
L(s)  = 1  + (0.773 − 0.969i)2-s + (−0.618 − 0.775i)3-s + (−0.119 − 0.524i)4-s + (−0.517 − 0.249i)5-s − 1.23·6-s − 1.18·7-s + (0.516 + 0.248i)8-s + (0.00348 − 0.0152i)9-s + (−0.641 + 0.308i)10-s + (−0.0368 + 0.161i)11-s + (−0.332 + 0.416i)12-s + (−0.793 − 0.381i)13-s + (−0.916 + 1.14i)14-s + (0.126 + 0.555i)15-s + (1.12 − 0.541i)16-s + (0.0553 − 0.0266i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.937 - 0.348i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.937 - 0.348i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $-0.937 - 0.348i$
Analytic conductor: \(6.89650\)
Root analytic conductor: \(2.62611\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :5/2),\ -0.937 - 0.348i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.200725 + 1.11665i\)
\(L(\frac12)\) \(\approx\) \(0.200725 + 1.11665i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 + (-1.05e4 - 5.88e3i)T \)
good2 \( 1 + (-4.37 + 5.48i)T + (-7.12 - 31.1i)T^{2} \)
3 \( 1 + (9.64 + 12.0i)T + (-54.0 + 236. i)T^{2} \)
5 \( 1 + (28.9 + 13.9i)T + (1.94e3 + 2.44e3i)T^{2} \)
7 \( 1 + 153.T + 1.68e4T^{2} \)
11 \( 1 + (14.7 - 64.7i)T + (-1.45e5 - 6.98e4i)T^{2} \)
13 \( 1 + (483. + 232. i)T + (2.31e5 + 2.90e5i)T^{2} \)
17 \( 1 + (-65.9 + 31.7i)T + (8.85e5 - 1.11e6i)T^{2} \)
19 \( 1 + (275. + 1.20e3i)T + (-2.23e6 + 1.07e6i)T^{2} \)
23 \( 1 + (-392. + 1.71e3i)T + (-5.79e6 - 2.79e6i)T^{2} \)
29 \( 1 + (-3.84e3 + 4.81e3i)T + (-4.56e6 - 1.99e7i)T^{2} \)
31 \( 1 + (-1.02e3 + 1.28e3i)T + (-6.37e6 - 2.79e7i)T^{2} \)
37 \( 1 - 6.03e3T + 6.93e7T^{2} \)
41 \( 1 + (-2.24e3 + 2.80e3i)T + (-2.57e7 - 1.12e8i)T^{2} \)
47 \( 1 + (-3.93e3 - 1.72e4i)T + (-2.06e8 + 9.95e7i)T^{2} \)
53 \( 1 + (1.46e4 - 7.04e3i)T + (2.60e8 - 3.26e8i)T^{2} \)
59 \( 1 + (2.87e4 - 1.38e4i)T + (4.45e8 - 5.58e8i)T^{2} \)
61 \( 1 + (9.24e3 + 1.15e4i)T + (-1.87e8 + 8.23e8i)T^{2} \)
67 \( 1 + (-1.72e3 - 7.56e3i)T + (-1.21e9 + 5.85e8i)T^{2} \)
71 \( 1 + (9.58e3 + 4.19e4i)T + (-1.62e9 + 7.82e8i)T^{2} \)
73 \( 1 + (-3.23e4 - 1.55e4i)T + (1.29e9 + 1.62e9i)T^{2} \)
79 \( 1 - 5.57e4T + 3.07e9T^{2} \)
83 \( 1 + (-7.27e4 - 9.11e4i)T + (-8.76e8 + 3.84e9i)T^{2} \)
89 \( 1 + (5.42e4 + 6.80e4i)T + (-1.24e9 + 5.44e9i)T^{2} \)
97 \( 1 + (-1.97e4 + 8.66e4i)T + (-7.73e9 - 3.72e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.73911425178176116796833360509, −12.53614517231614244331793578469, −12.40441680681076586113754092951, −11.14673906361359846109676400668, −9.726877055671674125834047727525, −7.65681335178096637575465208513, −6.24229009588544501053871045459, −4.42058170508736327725192440291, −2.74367852239952547963267994158, −0.51115869709720880703035943847, 3.72336163068330086371427357945, 5.07830796599025050583204796942, 6.32289221106338084841989476857, 7.55328065828153846825901402594, 9.678904210002677449180041594061, 10.72762331738618890932364089871, 12.23768762350503568956458663897, 13.49220543096936361464073714308, 14.72086439112074073513133548778, 15.73530563369987703042249466819

Graph of the $Z$-function along the critical line