Properties

Label 2-43-43.4-c5-0-5
Degree $2$
Conductor $43$
Sign $-0.204 - 0.978i$
Analytic cond. $6.89650$
Root an. cond. $2.62611$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.240 − 0.301i)2-s + (8.08 + 10.1i)3-s + (7.08 + 31.0i)4-s + (33.3 + 16.0i)5-s + 4.99·6-s − 195.·7-s + (22.1 + 10.6i)8-s + (16.6 − 73.0i)9-s + (12.8 − 6.18i)10-s + (−118. + 519. i)11-s + (−257. + 322. i)12-s + (330. + 159. i)13-s + (−47.0 + 58.9i)14-s + (106. + 467. i)15-s + (−909. + 438. i)16-s + (1.70e3 − 820. i)17-s + ⋯
L(s)  = 1  + (0.0424 − 0.0532i)2-s + (0.518 + 0.650i)3-s + (0.221 + 0.970i)4-s + (0.595 + 0.287i)5-s + 0.0566·6-s − 1.50·7-s + (0.122 + 0.0590i)8-s + (0.0686 − 0.300i)9-s + (0.0406 − 0.0195i)10-s + (−0.295 + 1.29i)11-s + (−0.516 + 0.647i)12-s + (0.542 + 0.261i)13-s + (−0.0641 + 0.0804i)14-s + (0.122 + 0.536i)15-s + (−0.888 + 0.427i)16-s + (1.43 − 0.688i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.204 - 0.978i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.204 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $-0.204 - 0.978i$
Analytic conductor: \(6.89650\)
Root analytic conductor: \(2.62611\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :5/2),\ -0.204 - 0.978i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.18526 + 1.45772i\)
\(L(\frac12)\) \(\approx\) \(1.18526 + 1.45772i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 + (-653. - 1.21e4i)T \)
good2 \( 1 + (-0.240 + 0.301i)T + (-7.12 - 31.1i)T^{2} \)
3 \( 1 + (-8.08 - 10.1i)T + (-54.0 + 236. i)T^{2} \)
5 \( 1 + (-33.3 - 16.0i)T + (1.94e3 + 2.44e3i)T^{2} \)
7 \( 1 + 195.T + 1.68e4T^{2} \)
11 \( 1 + (118. - 519. i)T + (-1.45e5 - 6.98e4i)T^{2} \)
13 \( 1 + (-330. - 159. i)T + (2.31e5 + 2.90e5i)T^{2} \)
17 \( 1 + (-1.70e3 + 820. i)T + (8.85e5 - 1.11e6i)T^{2} \)
19 \( 1 + (-168. - 739. i)T + (-2.23e6 + 1.07e6i)T^{2} \)
23 \( 1 + (707. - 3.10e3i)T + (-5.79e6 - 2.79e6i)T^{2} \)
29 \( 1 + (-1.60e3 + 2.01e3i)T + (-4.56e6 - 1.99e7i)T^{2} \)
31 \( 1 + (-4.48e3 + 5.62e3i)T + (-6.37e6 - 2.79e7i)T^{2} \)
37 \( 1 - 7.26e3T + 6.93e7T^{2} \)
41 \( 1 + (-7.51e3 + 9.42e3i)T + (-2.57e7 - 1.12e8i)T^{2} \)
47 \( 1 + (1.11e3 + 4.89e3i)T + (-2.06e8 + 9.95e7i)T^{2} \)
53 \( 1 + (2.51e4 - 1.20e4i)T + (2.60e8 - 3.26e8i)T^{2} \)
59 \( 1 + (-1.88e4 + 9.09e3i)T + (4.45e8 - 5.58e8i)T^{2} \)
61 \( 1 + (-9.45e3 - 1.18e4i)T + (-1.87e8 + 8.23e8i)T^{2} \)
67 \( 1 + (1.14e4 + 5.01e4i)T + (-1.21e9 + 5.85e8i)T^{2} \)
71 \( 1 + (-2.96e3 - 1.29e4i)T + (-1.62e9 + 7.82e8i)T^{2} \)
73 \( 1 + (-6.84e4 - 3.29e4i)T + (1.29e9 + 1.62e9i)T^{2} \)
79 \( 1 + 2.83e4T + 3.07e9T^{2} \)
83 \( 1 + (5.73e4 + 7.19e4i)T + (-8.76e8 + 3.84e9i)T^{2} \)
89 \( 1 + (5.23e4 + 6.55e4i)T + (-1.24e9 + 5.44e9i)T^{2} \)
97 \( 1 + (3.09e4 - 1.35e5i)T + (-7.73e9 - 3.72e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.52308977414632195005161577732, −14.05233520326614030352500437168, −12.91213411187452602871955834149, −11.95135603160399167482988602607, −9.899863582735213567840538072678, −9.545924024687888374443061684264, −7.68244175995197404973170847779, −6.29311192099763805816525832282, −3.92385124095319626117342050270, −2.77837291398822322724826259746, 1.01398965176630823911883389893, 2.91909188850695971205366131144, 5.63684727866959483080220772349, 6.58085258419164027971793773598, 8.369390895037087765349319536035, 9.757309905200915526692735304443, 10.72858208693047643455298782938, 12.68297773809291382677065349396, 13.50979998970655078082994403579, 14.30838757872890641305027944446

Graph of the $Z$-function along the critical line