Properties

Label 2-43-43.11-c5-0-3
Degree $2$
Conductor $43$
Sign $-0.183 + 0.983i$
Analytic cond. $6.89650$
Root an. cond. $2.62611$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−6.31 − 7.92i)2-s + (−18.2 + 22.9i)3-s + (−15.7 + 68.8i)4-s + (−46.4 + 22.3i)5-s + 296.·6-s − 129.·7-s + (352. − 169. i)8-s + (−136. − 599. i)9-s + (470. + 226. i)10-s + (113. + 497. i)11-s + (−1.28e3 − 1.61e3i)12-s + (−517. + 249. i)13-s + (820. + 1.02e3i)14-s + (336. − 1.47e3i)15-s + (−1.53e3 − 738. i)16-s + (−0.150 − 0.0723i)17-s + ⋯
L(s)  = 1  + (−1.11 − 1.40i)2-s + (−1.17 + 1.46i)3-s + (−0.491 + 2.15i)4-s + (−0.831 + 0.400i)5-s + 3.36·6-s − 1.00·7-s + (1.94 − 0.937i)8-s + (−0.563 − 2.46i)9-s + (1.48 + 0.716i)10-s + (0.283 + 1.24i)11-s + (−2.58 − 3.24i)12-s + (−0.849 + 0.409i)13-s + (1.11 + 1.40i)14-s + (0.385 − 1.69i)15-s + (−1.49 − 0.721i)16-s + (−0.000126 − 6.06e−5i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.183 + 0.983i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.183 + 0.983i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $-0.183 + 0.983i$
Analytic conductor: \(6.89650\)
Root analytic conductor: \(2.62611\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :5/2),\ -0.183 + 0.983i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.0533611 - 0.0642412i\)
\(L(\frac12)\) \(\approx\) \(0.0533611 - 0.0642412i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 + (-400. + 1.21e4i)T \)
good2 \( 1 + (6.31 + 7.92i)T + (-7.12 + 31.1i)T^{2} \)
3 \( 1 + (18.2 - 22.9i)T + (-54.0 - 236. i)T^{2} \)
5 \( 1 + (46.4 - 22.3i)T + (1.94e3 - 2.44e3i)T^{2} \)
7 \( 1 + 129.T + 1.68e4T^{2} \)
11 \( 1 + (-113. - 497. i)T + (-1.45e5 + 6.98e4i)T^{2} \)
13 \( 1 + (517. - 249. i)T + (2.31e5 - 2.90e5i)T^{2} \)
17 \( 1 + (0.150 + 0.0723i)T + (8.85e5 + 1.11e6i)T^{2} \)
19 \( 1 + (-537. + 2.35e3i)T + (-2.23e6 - 1.07e6i)T^{2} \)
23 \( 1 + (-455. - 1.99e3i)T + (-5.79e6 + 2.79e6i)T^{2} \)
29 \( 1 + (243. + 305. i)T + (-4.56e6 + 1.99e7i)T^{2} \)
31 \( 1 + (-1.15e3 - 1.45e3i)T + (-6.37e6 + 2.79e7i)T^{2} \)
37 \( 1 + 3.84e3T + 6.93e7T^{2} \)
41 \( 1 + (-7.00e3 - 8.77e3i)T + (-2.57e7 + 1.12e8i)T^{2} \)
47 \( 1 + (4.92e3 - 2.15e4i)T + (-2.06e8 - 9.95e7i)T^{2} \)
53 \( 1 + (1.01e4 + 4.88e3i)T + (2.60e8 + 3.26e8i)T^{2} \)
59 \( 1 + (-5.91e3 - 2.85e3i)T + (4.45e8 + 5.58e8i)T^{2} \)
61 \( 1 + (-1.72e4 + 2.16e4i)T + (-1.87e8 - 8.23e8i)T^{2} \)
67 \( 1 + (-5.59e3 + 2.45e4i)T + (-1.21e9 - 5.85e8i)T^{2} \)
71 \( 1 + (-1.21e4 + 5.33e4i)T + (-1.62e9 - 7.82e8i)T^{2} \)
73 \( 1 + (4.82e4 - 2.32e4i)T + (1.29e9 - 1.62e9i)T^{2} \)
79 \( 1 + 770.T + 3.07e9T^{2} \)
83 \( 1 + (-1.48e4 + 1.85e4i)T + (-8.76e8 - 3.84e9i)T^{2} \)
89 \( 1 + (6.38e4 - 8.00e4i)T + (-1.24e9 - 5.44e9i)T^{2} \)
97 \( 1 + (-3.89e3 - 1.70e4i)T + (-7.73e9 + 3.72e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.18170762220623012690141833231, −12.54158333446161197620499243260, −11.69697696311657189888055590612, −10.95471824758351352751590742431, −9.738827411896756808902030655788, −9.400149174601422902803784697407, −7.06283182027775747982609919007, −4.52690135918366314750986538936, −3.25490754230201930250499135324, −0.12159873498622237591037820083, 0.76546937469551301238584727105, 5.58003963535850599471982022977, 6.46461219222907929142328077052, 7.55219302884240141763040134985, 8.431102914205302730026333953308, 10.26009228854365338489178122944, 11.77889042260016553948117100600, 12.84900053611715390037843383083, 14.27295909994641205287014069509, 16.05497785644496161655754723703

Graph of the $Z$-function along the critical line