Properties

Label 2-43-43.11-c3-0-4
Degree $2$
Conductor $43$
Sign $-0.451 - 0.892i$
Analytic cond. $2.53708$
Root an. cond. $1.59282$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.72 + 3.41i)2-s + (−2.84 + 3.56i)3-s + (−2.46 + 10.7i)4-s + (8.30 − 3.99i)5-s − 19.9·6-s − 12.2·7-s + (−12.0 + 5.79i)8-s + (1.38 + 6.06i)9-s + (36.2 + 17.4i)10-s + (−3.74 − 16.3i)11-s + (−31.4 − 39.4i)12-s + (66.8 − 32.1i)13-s + (−33.3 − 41.8i)14-s + (−9.34 + 40.9i)15-s + (27.1 + 13.0i)16-s + (−0.640 − 0.308i)17-s + ⋯
L(s)  = 1  + (0.962 + 1.20i)2-s + (−0.546 + 0.685i)3-s + (−0.307 + 1.34i)4-s + (0.742 − 0.357i)5-s − 1.35·6-s − 0.662·7-s + (−0.532 + 0.256i)8-s + (0.0512 + 0.224i)9-s + (1.14 + 0.551i)10-s + (−0.102 − 0.449i)11-s + (−0.756 − 0.948i)12-s + (1.42 − 0.686i)13-s + (−0.637 − 0.799i)14-s + (−0.160 + 0.704i)15-s + (0.424 + 0.204i)16-s + (−0.00914 − 0.00440i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.451 - 0.892i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.451 - 0.892i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $-0.451 - 0.892i$
Analytic conductor: \(2.53708\)
Root analytic conductor: \(1.59282\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{43} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :3/2),\ -0.451 - 0.892i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.986525 + 1.60510i\)
\(L(\frac12)\) \(\approx\) \(0.986525 + 1.60510i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 + (163. + 229. i)T \)
good2 \( 1 + (-2.72 - 3.41i)T + (-1.78 + 7.79i)T^{2} \)
3 \( 1 + (2.84 - 3.56i)T + (-6.00 - 26.3i)T^{2} \)
5 \( 1 + (-8.30 + 3.99i)T + (77.9 - 97.7i)T^{2} \)
7 \( 1 + 12.2T + 343T^{2} \)
11 \( 1 + (3.74 + 16.3i)T + (-1.19e3 + 577. i)T^{2} \)
13 \( 1 + (-66.8 + 32.1i)T + (1.36e3 - 1.71e3i)T^{2} \)
17 \( 1 + (0.640 + 0.308i)T + (3.06e3 + 3.84e3i)T^{2} \)
19 \( 1 + (6.96 - 30.5i)T + (-6.17e3 - 2.97e3i)T^{2} \)
23 \( 1 + (18.6 + 81.7i)T + (-1.09e4 + 5.27e3i)T^{2} \)
29 \( 1 + (142. + 178. i)T + (-5.42e3 + 2.37e4i)T^{2} \)
31 \( 1 + (151. + 190. i)T + (-6.62e3 + 2.90e4i)T^{2} \)
37 \( 1 - 82.4T + 5.06e4T^{2} \)
41 \( 1 + (-252. - 316. i)T + (-1.53e4 + 6.71e4i)T^{2} \)
47 \( 1 + (78.0 - 342. i)T + (-9.35e4 - 4.50e4i)T^{2} \)
53 \( 1 + (95.6 + 46.0i)T + (9.28e4 + 1.16e5i)T^{2} \)
59 \( 1 + (-616. - 296. i)T + (1.28e5 + 1.60e5i)T^{2} \)
61 \( 1 + (-315. + 395. i)T + (-5.05e4 - 2.21e5i)T^{2} \)
67 \( 1 + (63.7 - 279. i)T + (-2.70e5 - 1.30e5i)T^{2} \)
71 \( 1 + (-29.2 + 128. i)T + (-3.22e5 - 1.55e5i)T^{2} \)
73 \( 1 + (656. - 316. i)T + (2.42e5 - 3.04e5i)T^{2} \)
79 \( 1 - 818.T + 4.93e5T^{2} \)
83 \( 1 + (540. - 677. i)T + (-1.27e5 - 5.57e5i)T^{2} \)
89 \( 1 + (-545. + 684. i)T + (-1.56e5 - 6.87e5i)T^{2} \)
97 \( 1 + (-207. - 908. i)T + (-8.22e5 + 3.95e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.02782697151167151763846939372, −14.87433423927075433336062743723, −13.42199807376489934479610208075, −13.05637461661929986939215786565, −11.05357290869439934029171984086, −9.747104830763258514669232680240, −8.036904355942193469112773623749, −6.14108082460607370624123776064, −5.55546952987834472459109408192, −3.96864602426520895272931004312, 1.69395511554357990536712200830, 3.61544787152034387085157469120, 5.65759924689113853986194375565, 6.82535222441984408684246470607, 9.392180624609604443132061309100, 10.70060288386595390824459573167, 11.69570766324802043825813057020, 12.82621577776243667587215205046, 13.41264471328674074070697833175, 14.54599200171755934514307302749

Graph of the $Z$-function along the critical line