Properties

Label 2-43-1.1-c9-0-5
Degree $2$
Conductor $43$
Sign $1$
Analytic cond. $22.1465$
Root an. cond. $4.70601$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 36.1·2-s − 228.·3-s + 796.·4-s + 2.34e3·5-s + 8.26e3·6-s + 528.·7-s − 1.02e4·8-s + 3.25e4·9-s − 8.49e4·10-s − 5.12e4·11-s − 1.82e5·12-s + 7.38e4·13-s − 1.91e4·14-s − 5.37e5·15-s − 3.57e4·16-s + 4.54e5·17-s − 1.17e6·18-s + 2.96e5·19-s + 1.87e6·20-s − 1.20e5·21-s + 1.85e6·22-s − 2.55e6·23-s + 2.35e6·24-s + 3.56e6·25-s − 2.67e6·26-s − 2.94e6·27-s + 4.21e5·28-s + ⋯
L(s)  = 1  − 1.59·2-s − 1.62·3-s + 1.55·4-s + 1.68·5-s + 2.60·6-s + 0.0832·7-s − 0.887·8-s + 1.65·9-s − 2.68·10-s − 1.05·11-s − 2.53·12-s + 0.716·13-s − 0.133·14-s − 2.73·15-s − 0.136·16-s + 1.31·17-s − 2.64·18-s + 0.522·19-s + 2.61·20-s − 0.135·21-s + 1.68·22-s − 1.90·23-s + 1.44·24-s + 1.82·25-s − 1.14·26-s − 1.06·27-s + 0.129·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43\)
Sign: $1$
Analytic conductor: \(22.1465\)
Root analytic conductor: \(4.70601\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 43,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(0.6109147553\)
\(L(\frac12)\) \(\approx\) \(0.6109147553\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad43 \( 1 - 3.41e6T \)
good2 \( 1 + 36.1T + 512T^{2} \)
3 \( 1 + 228.T + 1.96e4T^{2} \)
5 \( 1 - 2.34e3T + 1.95e6T^{2} \)
7 \( 1 - 528.T + 4.03e7T^{2} \)
11 \( 1 + 5.12e4T + 2.35e9T^{2} \)
13 \( 1 - 7.38e4T + 1.06e10T^{2} \)
17 \( 1 - 4.54e5T + 1.18e11T^{2} \)
19 \( 1 - 2.96e5T + 3.22e11T^{2} \)
23 \( 1 + 2.55e6T + 1.80e12T^{2} \)
29 \( 1 + 1.91e6T + 1.45e13T^{2} \)
31 \( 1 + 4.32e6T + 2.64e13T^{2} \)
37 \( 1 + 8.57e5T + 1.29e14T^{2} \)
41 \( 1 - 2.16e7T + 3.27e14T^{2} \)
47 \( 1 - 4.95e7T + 1.11e15T^{2} \)
53 \( 1 - 1.17e7T + 3.29e15T^{2} \)
59 \( 1 + 9.89e7T + 8.66e15T^{2} \)
61 \( 1 + 5.52e7T + 1.16e16T^{2} \)
67 \( 1 - 2.34e8T + 2.72e16T^{2} \)
71 \( 1 - 2.83e8T + 4.58e16T^{2} \)
73 \( 1 + 2.61e8T + 5.88e16T^{2} \)
79 \( 1 - 5.71e8T + 1.19e17T^{2} \)
83 \( 1 - 7.94e8T + 1.86e17T^{2} \)
89 \( 1 + 1.12e8T + 3.50e17T^{2} \)
97 \( 1 + 6.40e7T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.82401648417069888016217541387, −12.42929618798848794942012912147, −10.98346617152445415108335011603, −10.27542309703807343691753744853, −9.503730386803657867920707608645, −7.71887651987812182902457939475, −6.18095243689604023284927578376, −5.44557686155874929679729994510, −1.90346113389485286250135964975, −0.74080174588626834765805469414, 0.74080174588626834765805469414, 1.90346113389485286250135964975, 5.44557686155874929679729994510, 6.18095243689604023284927578376, 7.71887651987812182902457939475, 9.503730386803657867920707608645, 10.27542309703807343691753744853, 10.98346617152445415108335011603, 12.42929618798848794942012912147, 13.82401648417069888016217541387

Graph of the $Z$-function along the critical line