| L(s) = 1 | + (1.27 − 1.27i)2-s + (−0.635 − 0.263i)3-s − 1.26i·4-s + (−1.14 + 0.475i)6-s + (−1.66 − 4.01i)7-s + (0.943 + 0.943i)8-s + (−1.78 − 1.78i)9-s + (0.0485 − 0.0200i)11-s + (−0.331 + 0.801i)12-s − 3.02i·13-s + (−7.24 − 3.00i)14-s + 4.93·16-s + (−3.12 + 2.69i)17-s − 4.56·18-s + (5.52 − 5.52i)19-s + ⋯ |
| L(s) = 1 | + (0.902 − 0.902i)2-s + (−0.366 − 0.151i)3-s − 0.630i·4-s + (−0.468 + 0.194i)6-s + (−0.628 − 1.51i)7-s + (0.333 + 0.333i)8-s + (−0.595 − 0.595i)9-s + (0.0146 − 0.00605i)11-s + (−0.0958 + 0.231i)12-s − 0.839i·13-s + (−1.93 − 0.801i)14-s + 1.23·16-s + (−0.757 + 0.653i)17-s − 1.07·18-s + (1.26 − 1.26i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.725 + 0.687i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.725 + 0.687i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.625553 - 1.57003i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.625553 - 1.57003i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 17 | \( 1 + (3.12 - 2.69i)T \) |
| good | 2 | \( 1 + (-1.27 + 1.27i)T - 2iT^{2} \) |
| 3 | \( 1 + (0.635 + 0.263i)T + (2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (1.66 + 4.01i)T + (-4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-0.0485 + 0.0200i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 3.02iT - 13T^{2} \) |
| 19 | \( 1 + (-5.52 + 5.52i)T - 19iT^{2} \) |
| 23 | \( 1 + (0.962 - 0.398i)T + (16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (0.161 - 0.388i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (1.27 + 0.529i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (0.311 + 0.128i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-2.52 - 6.09i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-7.06 - 7.06i)T + 43iT^{2} \) |
| 47 | \( 1 - 6.13iT - 47T^{2} \) |
| 53 | \( 1 + (-8.52 + 8.52i)T - 53iT^{2} \) |
| 59 | \( 1 + (-3.60 - 3.60i)T + 59iT^{2} \) |
| 61 | \( 1 + (2.28 + 5.51i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 0.916T + 67T^{2} \) |
| 71 | \( 1 + (-3.86 - 1.59i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (2.06 - 4.98i)T + (-51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-9.22 + 3.82i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (-4.61 + 4.61i)T - 83iT^{2} \) |
| 89 | \( 1 + 10.2iT - 89T^{2} \) |
| 97 | \( 1 + (-7.35 + 17.7i)T + (-68.5 - 68.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.07164096941629662270197244727, −10.33561242449973603397961747309, −9.326872860735001315816675490610, −7.919192003755273912518959671097, −6.96306652704203825673310964235, −5.89330111559224894200072698614, −4.72411616136481710340240999589, −3.70200771270816436363672086225, −2.87862042362169399504507094596, −0.876332064651138356347629992272,
2.39962299581080215231330983059, 3.87024438146246072728442277421, 5.22185621435130803290481599773, 5.64950993538585464937973082184, 6.51473445649481603810691879834, 7.55758929116301521597000052812, 8.757930590463991704572077795810, 9.578139532510977022926736678393, 10.70926544706722907505750388630, 11.94995712253692877330333377035