Properties

Label 12-65e12-1.1-c1e6-0-1
Degree $12$
Conductor $5.688\times 10^{21}$
Sign $1$
Analytic cond. $1.47442\times 10^{9}$
Root an. cond. $5.80833$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s − 6·9-s + 10·16-s + 12·19-s + 18·29-s − 8·31-s + 24·36-s − 14·41-s − 18·49-s − 4·59-s − 6·61-s − 23·64-s + 12·71-s − 48·76-s + 52·79-s + 10·81-s + 20·89-s + 26·101-s − 12·109-s − 72·116-s − 40·121-s + 32·124-s + 127-s + 131-s + 137-s + 139-s − 60·144-s + ⋯
L(s)  = 1  − 2·4-s − 2·9-s + 5/2·16-s + 2.75·19-s + 3.34·29-s − 1.43·31-s + 4·36-s − 2.18·41-s − 2.57·49-s − 0.520·59-s − 0.768·61-s − 2.87·64-s + 1.42·71-s − 5.50·76-s + 5.85·79-s + 10/9·81-s + 2.11·89-s + 2.58·101-s − 1.14·109-s − 6.68·116-s − 3.63·121-s + 2.87·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5·144-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{12} \cdot 13^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(5^{12} \cdot 13^{12}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{6} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(12\)
Conductor: \(5^{12} \cdot 13^{12}\)
Sign: $1$
Analytic conductor: \(1.47442\times 10^{9}\)
Root analytic conductor: \(5.80833\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((12,\ 5^{12} \cdot 13^{12} ,\ ( \ : [1/2]^{6} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.703337248\)
\(L(\frac12)\) \(\approx\) \(4.703337248\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
13 \( 1 \)
good2 \( 1 + p^{2} T^{2} + 3 p T^{4} + 7 T^{6} + 3 p^{3} T^{8} + p^{6} T^{10} + p^{6} T^{12} \)
3 \( 1 + 2 p T^{2} + 26 T^{4} + 98 T^{6} + 26 p^{2} T^{8} + 2 p^{5} T^{10} + p^{6} T^{12} \)
7 \( 1 + 18 T^{2} + 242 T^{4} + 1910 T^{6} + 242 p^{2} T^{8} + 18 p^{4} T^{10} + p^{6} T^{12} \)
11 \( ( 1 + 20 T^{2} - 8 T^{3} + 20 p T^{4} + p^{3} T^{6} )^{2} \)
17 \( 1 + 67 T^{2} + 2118 T^{4} + 42943 T^{6} + 2118 p^{2} T^{8} + 67 p^{4} T^{10} + p^{6} T^{12} \)
19 \( ( 1 - 6 T + 56 T^{2} - 218 T^{3} + 56 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
23 \( 1 + 126 T^{2} + 6866 T^{4} + 206858 T^{6} + 6866 p^{2} T^{8} + 126 p^{4} T^{10} + p^{6} T^{12} \)
29 \( ( 1 - 3 T + p T^{2} )^{6} \)
31 \( ( 1 + 4 T + 53 T^{2} + 288 T^{3} + 53 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
37 \( 1 + 187 T^{2} + 15518 T^{4} + 737463 T^{6} + 15518 p^{2} T^{8} + 187 p^{4} T^{10} + p^{6} T^{12} \)
41 \( ( 1 + 7 T + 94 T^{2} + 579 T^{3} + 94 p T^{4} + 7 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
43 \( 1 + 178 T^{2} + 14258 T^{4} + 726702 T^{6} + 14258 p^{2} T^{8} + 178 p^{4} T^{10} + p^{6} T^{12} \)
47 \( 1 + 46 T^{2} + 3407 T^{4} + 54276 T^{6} + 3407 p^{2} T^{8} + 46 p^{4} T^{10} + p^{6} T^{12} \)
53 \( 1 + 147 T^{2} + 6923 T^{4} + 205346 T^{6} + 6923 p^{2} T^{8} + 147 p^{4} T^{10} + p^{6} T^{12} \)
59 \( ( 1 + 2 T + 122 T^{2} + 100 T^{3} + 122 p T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
61 \( ( 1 + 3 T + 134 T^{2} + 251 T^{3} + 134 p T^{4} + 3 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
67 \( 1 + 302 T^{2} + 43138 T^{4} + 3650498 T^{6} + 43138 p^{2} T^{8} + 302 p^{4} T^{10} + p^{6} T^{12} \)
71 \( ( 1 - 6 T + 212 T^{2} - 826 T^{3} + 212 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
73 \( 1 + 223 T^{2} + 31055 T^{4} + 2685330 T^{6} + 31055 p^{2} T^{8} + 223 p^{4} T^{10} + p^{6} T^{12} \)
79 \( ( 1 - 26 T + 417 T^{2} - 4268 T^{3} + 417 p T^{4} - 26 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
83 \( 1 + 222 T^{2} + 35303 T^{4} + 3305156 T^{6} + 35303 p^{2} T^{8} + 222 p^{4} T^{10} + p^{6} T^{12} \)
89 \( ( 1 - 10 T + 110 T^{2} - 194 T^{3} + 110 p T^{4} - 10 p^{2} T^{5} + p^{3} T^{6} )^{2} \)
97 \( 1 + 302 T^{2} + 46858 T^{4} + 5028458 T^{6} + 46858 p^{2} T^{8} + 302 p^{4} T^{10} + p^{6} T^{12} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{12} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.34528346646870533063188557521, −4.34499663368212243301087585442, −3.93464623935156862844841382884, −3.75857318453559891421275362206, −3.68560722674909413384892988328, −3.58645696898119085117370171771, −3.54857779267267509153525193639, −3.17583426330440505315941829642, −3.11192647795264430036023526502, −3.09620557087689456219660089266, −3.04531704883763229646579654977, −2.96492018464278557592206911827, −2.61616395804630329494232474031, −2.27665012052374571638068055966, −2.24040830751892930348700397859, −2.20866037252449487982820953084, −1.65165183872101162553481015056, −1.63922934865158219867073109996, −1.54463142643230521070862371139, −1.42895913904663460391827609564, −0.830381978243936011896859225589, −0.70431289429278213125420356361, −0.63728415183471449482695562756, −0.53063647249487251582270540895, −0.32539287137691842935865511518, 0.32539287137691842935865511518, 0.53063647249487251582270540895, 0.63728415183471449482695562756, 0.70431289429278213125420356361, 0.830381978243936011896859225589, 1.42895913904663460391827609564, 1.54463142643230521070862371139, 1.63922934865158219867073109996, 1.65165183872101162553481015056, 2.20866037252449487982820953084, 2.24040830751892930348700397859, 2.27665012052374571638068055966, 2.61616395804630329494232474031, 2.96492018464278557592206911827, 3.04531704883763229646579654977, 3.09620557087689456219660089266, 3.11192647795264430036023526502, 3.17583426330440505315941829642, 3.54857779267267509153525193639, 3.58645696898119085117370171771, 3.68560722674909413384892988328, 3.75857318453559891421275362206, 3.93464623935156862844841382884, 4.34499663368212243301087585442, 4.34528346646870533063188557521

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.