Properties

Label 2-418-19.6-c1-0-16
Degree $2$
Conductor $418$
Sign $-0.707 + 0.707i$
Analytic cond. $3.33774$
Root an. cond. $1.82695$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.766 − 0.642i)2-s + (−0.317 − 0.115i)3-s + (0.173 − 0.984i)4-s + (−0.456 − 2.58i)5-s + (−0.317 + 0.115i)6-s + (0.0977 − 0.169i)7-s + (−0.500 − 0.866i)8-s + (−2.21 − 1.85i)9-s + (−2.01 − 1.68i)10-s + (0.5 + 0.866i)11-s + (−0.168 + 0.292i)12-s + (−2.79 + 1.01i)13-s + (−0.0339 − 0.192i)14-s + (−0.153 + 0.873i)15-s + (−0.939 − 0.342i)16-s + (0.323 − 0.271i)17-s + ⋯
L(s)  = 1  + (0.541 − 0.454i)2-s + (−0.183 − 0.0666i)3-s + (0.0868 − 0.492i)4-s + (−0.204 − 1.15i)5-s + (−0.129 + 0.0471i)6-s + (0.0369 − 0.0640i)7-s + (−0.176 − 0.306i)8-s + (−0.736 − 0.618i)9-s + (−0.636 − 0.534i)10-s + (0.150 + 0.261i)11-s + (−0.0487 + 0.0843i)12-s + (−0.774 + 0.281i)13-s + (−0.00907 − 0.0514i)14-s + (−0.0397 + 0.225i)15-s + (−0.234 − 0.0855i)16-s + (0.0784 − 0.0658i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 418 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 418 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(418\)    =    \(2 \cdot 11 \cdot 19\)
Sign: $-0.707 + 0.707i$
Analytic conductor: \(3.33774\)
Root analytic conductor: \(1.82695\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{418} (177, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 418,\ (\ :1/2),\ -0.707 + 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.531076 - 1.28229i\)
\(L(\frac12)\) \(\approx\) \(0.531076 - 1.28229i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.766 + 0.642i)T \)
11 \( 1 + (-0.5 - 0.866i)T \)
19 \( 1 + (-1.78 + 3.97i)T \)
good3 \( 1 + (0.317 + 0.115i)T + (2.29 + 1.92i)T^{2} \)
5 \( 1 + (0.456 + 2.58i)T + (-4.69 + 1.71i)T^{2} \)
7 \( 1 + (-0.0977 + 0.169i)T + (-3.5 - 6.06i)T^{2} \)
13 \( 1 + (2.79 - 1.01i)T + (9.95 - 8.35i)T^{2} \)
17 \( 1 + (-0.323 + 0.271i)T + (2.95 - 16.7i)T^{2} \)
23 \( 1 + (0.286 - 1.62i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (2.12 + 1.78i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-3.97 + 6.88i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 - 9.69T + 37T^{2} \)
41 \( 1 + (5.95 + 2.16i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (0.0496 + 0.281i)T + (-40.4 + 14.7i)T^{2} \)
47 \( 1 + (-1.52 - 1.28i)T + (8.16 + 46.2i)T^{2} \)
53 \( 1 + (-0.593 + 3.36i)T + (-49.8 - 18.1i)T^{2} \)
59 \( 1 + (-10.8 + 9.12i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (1.45 - 8.27i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-5.15 - 4.32i)T + (11.6 + 65.9i)T^{2} \)
71 \( 1 + (-0.300 - 1.70i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (-12.7 - 4.63i)T + (55.9 + 46.9i)T^{2} \)
79 \( 1 + (6.92 + 2.51i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (3.51 - 6.09i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (9.28 - 3.38i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (-7.68 + 6.45i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.33539931261790469641172805744, −9.820499188293096918981918850709, −9.253401386647542764129152899570, −8.227551533102123622288957304204, −7.00777359920308552339721715018, −5.81330529781203477058890232909, −4.92425209492888370987085756949, −4.02518223772307711421040785159, −2.54150974338285383709785553913, −0.77041225939115948095243038668, 2.55571431001233198482605641229, 3.49486296278533859498648661294, 4.91760053074950837347023512264, 5.85905378165193540878627368410, 6.80179192567040731075609352050, 7.69491448138426343931669858962, 8.519669475382176647862313775775, 9.955925452086510166594226866362, 10.75832129145301600632002893103, 11.57086163054770890267091071994

Graph of the $Z$-function along the critical line