Properties

Label 2-418-19.9-c1-0-1
Degree $2$
Conductor $418$
Sign $-0.999 + 0.0291i$
Analytic cond. $3.33774$
Root an. cond. $1.82695$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.173 − 0.984i)2-s + (−1.95 + 1.64i)3-s + (−0.939 + 0.342i)4-s + (0.968 + 0.352i)5-s + (1.95 + 1.64i)6-s + (−1.38 + 2.40i)7-s + (0.5 + 0.866i)8-s + (0.612 − 3.47i)9-s + (0.179 − 1.01i)10-s + (−0.5 − 0.866i)11-s + (1.27 − 2.21i)12-s + (−2.02 − 1.69i)13-s + (2.60 + 0.948i)14-s + (−2.47 + 0.900i)15-s + (0.766 − 0.642i)16-s + (−1.03 − 5.86i)17-s + ⋯
L(s)  = 1  + (−0.122 − 0.696i)2-s + (−1.12 + 0.948i)3-s + (−0.469 + 0.171i)4-s + (0.433 + 0.157i)5-s + (0.798 + 0.670i)6-s + (−0.524 + 0.907i)7-s + (0.176 + 0.306i)8-s + (0.204 − 1.15i)9-s + (0.0566 − 0.321i)10-s + (−0.150 − 0.261i)11-s + (0.368 − 0.638i)12-s + (−0.560 − 0.470i)13-s + (0.696 + 0.253i)14-s + (−0.639 + 0.232i)15-s + (0.191 − 0.160i)16-s + (−0.250 − 1.42i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 418 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0291i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 418 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0291i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(418\)    =    \(2 \cdot 11 \cdot 19\)
Sign: $-0.999 + 0.0291i$
Analytic conductor: \(3.33774\)
Root analytic conductor: \(1.82695\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{418} (199, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 418,\ (\ :1/2),\ -0.999 + 0.0291i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.00112183 - 0.0769326i\)
\(L(\frac12)\) \(\approx\) \(0.00112183 - 0.0769326i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.173 + 0.984i)T \)
11 \( 1 + (0.5 + 0.866i)T \)
19 \( 1 + (2.12 - 3.80i)T \)
good3 \( 1 + (1.95 - 1.64i)T + (0.520 - 2.95i)T^{2} \)
5 \( 1 + (-0.968 - 0.352i)T + (3.83 + 3.21i)T^{2} \)
7 \( 1 + (1.38 - 2.40i)T + (-3.5 - 6.06i)T^{2} \)
13 \( 1 + (2.02 + 1.69i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (1.03 + 5.86i)T + (-15.9 + 5.81i)T^{2} \)
23 \( 1 + (2.40 - 0.874i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (0.371 - 2.10i)T + (-27.2 - 9.91i)T^{2} \)
31 \( 1 + (0.106 - 0.184i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 7.84T + 37T^{2} \)
41 \( 1 + (7.49 - 6.28i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (3.16 + 1.15i)T + (32.9 + 27.6i)T^{2} \)
47 \( 1 + (-2.10 + 11.9i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 + (-3.79 + 1.37i)T + (40.6 - 34.0i)T^{2} \)
59 \( 1 + (-0.678 - 3.84i)T + (-55.4 + 20.1i)T^{2} \)
61 \( 1 + (-7.75 + 2.82i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (-0.420 + 2.38i)T + (-62.9 - 22.9i)T^{2} \)
71 \( 1 + (-2.82 - 1.02i)T + (54.3 + 45.6i)T^{2} \)
73 \( 1 + (-0.751 + 0.630i)T + (12.6 - 71.8i)T^{2} \)
79 \( 1 + (7.19 - 6.03i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (5.29 - 9.17i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-9.02 - 7.57i)T + (15.4 + 87.6i)T^{2} \)
97 \( 1 + (1.28 + 7.26i)T + (-91.1 + 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.86715815634646785640497626984, −10.58502714306894265758336893537, −10.05029236604293080182574249667, −9.409146951926984086730082251172, −8.313243535317499339299754780284, −6.70753461673954014310791807485, −5.58983710815480120888640398675, −5.07942715975006441731767070074, −3.69177252883000555629656081811, −2.39145163237555738161274620699, 0.05669358788628023989346278406, 1.75423139408868518827758733148, 4.06632618839332731580096383919, 5.26646134709416658626559811348, 6.23895306638505556951692361301, 6.84099237853237145571731309632, 7.57496747289220609941542281278, 8.795210409904515072518809936164, 9.979239593598435232321810340343, 10.66210871686895035196740996587

Graph of the $Z$-function along the critical line