Properties

Label 2-418-19.6-c1-0-3
Degree $2$
Conductor $418$
Sign $0.597 + 0.802i$
Analytic cond. $3.33774$
Root an. cond. $1.82695$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.766 + 0.642i)2-s + (−3.00 − 1.09i)3-s + (0.173 − 0.984i)4-s + (−0.0619 − 0.351i)5-s + (3.00 − 1.09i)6-s + (−2.21 + 3.84i)7-s + (0.500 + 0.866i)8-s + (5.53 + 4.64i)9-s + (0.273 + 0.229i)10-s + (−0.5 − 0.866i)11-s + (−1.59 + 2.76i)12-s + (−0.289 + 0.105i)13-s + (−0.770 − 4.36i)14-s + (−0.198 + 1.12i)15-s + (−0.939 − 0.342i)16-s + (1.84 − 1.55i)17-s + ⋯
L(s)  = 1  + (−0.541 + 0.454i)2-s + (−1.73 − 0.631i)3-s + (0.0868 − 0.492i)4-s + (−0.0277 − 0.157i)5-s + (1.22 − 0.446i)6-s + (−0.838 + 1.45i)7-s + (0.176 + 0.306i)8-s + (1.84 + 1.54i)9-s + (0.0864 + 0.0725i)10-s + (−0.150 − 0.261i)11-s + (−0.461 + 0.799i)12-s + (−0.0804 + 0.0292i)13-s + (−0.205 − 1.16i)14-s + (−0.0511 + 0.290i)15-s + (−0.234 − 0.0855i)16-s + (0.448 − 0.376i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 418 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.597 + 0.802i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 418 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.597 + 0.802i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(418\)    =    \(2 \cdot 11 \cdot 19\)
Sign: $0.597 + 0.802i$
Analytic conductor: \(3.33774\)
Root analytic conductor: \(1.82695\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{418} (177, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 418,\ (\ :1/2),\ 0.597 + 0.802i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.337938 - 0.169710i\)
\(L(\frac12)\) \(\approx\) \(0.337938 - 0.169710i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.766 - 0.642i)T \)
11 \( 1 + (0.5 + 0.866i)T \)
19 \( 1 + (3.67 + 2.33i)T \)
good3 \( 1 + (3.00 + 1.09i)T + (2.29 + 1.92i)T^{2} \)
5 \( 1 + (0.0619 + 0.351i)T + (-4.69 + 1.71i)T^{2} \)
7 \( 1 + (2.21 - 3.84i)T + (-3.5 - 6.06i)T^{2} \)
13 \( 1 + (0.289 - 0.105i)T + (9.95 - 8.35i)T^{2} \)
17 \( 1 + (-1.84 + 1.55i)T + (2.95 - 16.7i)T^{2} \)
23 \( 1 + (-0.257 + 1.46i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (2.92 + 2.45i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-4.99 + 8.65i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 6.92T + 37T^{2} \)
41 \( 1 + (-5.91 - 2.15i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (-0.563 - 3.19i)T + (-40.4 + 14.7i)T^{2} \)
47 \( 1 + (-8.65 - 7.26i)T + (8.16 + 46.2i)T^{2} \)
53 \( 1 + (-1.63 + 9.29i)T + (-49.8 - 18.1i)T^{2} \)
59 \( 1 + (-9.07 + 7.61i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (-0.671 + 3.80i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (1.19 + 1.00i)T + (11.6 + 65.9i)T^{2} \)
71 \( 1 + (-0.872 - 4.95i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (3.07 + 1.11i)T + (55.9 + 46.9i)T^{2} \)
79 \( 1 + (12.8 + 4.68i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (0.107 - 0.185i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-16.6 + 6.07i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (-5.26 + 4.41i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.20122599336638981455495706870, −10.21076939249237132314753200022, −9.302072838137318608970701777922, −8.234228352414739059569883801485, −7.06210903629018984958310789328, −6.21510801716237107805294276480, −5.73671803491079830758414403895, −4.74108066494816303160381475408, −2.36440752338990473715991329729, −0.46718295829638765568811177089, 1.01058695951399532539521860166, 3.54337260930960874224842685880, 4.37122920028376502649168965239, 5.61739014458354327382308254766, 6.77690151018947272641601741289, 7.26646585990753351353770391557, 8.949469479576326767688049069350, 10.20869480092040543377955876568, 10.35703166573838695464583247096, 10.94558940824171729382076952823

Graph of the $Z$-function along the critical line