Properties

Label 2-4160-1.1-c1-0-20
Degree $2$
Conductor $4160$
Sign $1$
Analytic cond. $33.2177$
Root an. cond. $5.76348$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 4·7-s − 3·9-s − 4·11-s − 13-s + 2·17-s + 4·19-s + 25-s − 6·29-s + 4·31-s − 4·35-s − 6·37-s + 10·41-s + 8·43-s + 3·45-s − 12·47-s + 9·49-s + 10·53-s + 4·55-s + 12·59-s − 6·61-s − 12·63-s + 65-s + 4·67-s + 4·71-s + 2·73-s − 16·77-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.51·7-s − 9-s − 1.20·11-s − 0.277·13-s + 0.485·17-s + 0.917·19-s + 1/5·25-s − 1.11·29-s + 0.718·31-s − 0.676·35-s − 0.986·37-s + 1.56·41-s + 1.21·43-s + 0.447·45-s − 1.75·47-s + 9/7·49-s + 1.37·53-s + 0.539·55-s + 1.56·59-s − 0.768·61-s − 1.51·63-s + 0.124·65-s + 0.488·67-s + 0.474·71-s + 0.234·73-s − 1.82·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4160\)    =    \(2^{6} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(33.2177\)
Root analytic conductor: \(5.76348\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.683579269\)
\(L(\frac12)\) \(\approx\) \(1.683579269\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
13 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.309244290450919804794333553753, −7.67329570964766411027870248746, −7.35680121007472984855602818238, −5.99129441215593003127101172838, −5.27287808314464585859698784451, −4.91090016218149243406995408016, −3.82516275228838992667910123065, −2.86476400565642674836506023363, −2.05091823105766722106475095759, −0.73077687596790736687239317964, 0.73077687596790736687239317964, 2.05091823105766722106475095759, 2.86476400565642674836506023363, 3.82516275228838992667910123065, 4.91090016218149243406995408016, 5.27287808314464585859698784451, 5.99129441215593003127101172838, 7.35680121007472984855602818238, 7.67329570964766411027870248746, 8.309244290450919804794333553753

Graph of the $Z$-function along the critical line