Properties

Label 2-41-41.21-c1-0-2
Degree $2$
Conductor $41$
Sign $-0.520 + 0.853i$
Analytic cond. $0.327386$
Root an. cond. $0.572177$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.40 − 0.457i)2-s + (−1.90 − 1.90i)3-s + (0.153 + 0.111i)4-s + (−0.455 + 0.626i)5-s + (1.80 + 3.54i)6-s + (2.12 − 4.16i)7-s + (1.57 + 2.16i)8-s + 4.22i·9-s + (0.926 − 0.673i)10-s + (−0.538 − 0.0852i)11-s + (−0.0795 − 0.502i)12-s + (−0.808 + 0.411i)13-s + (−4.89 + 4.89i)14-s + (2.05 − 0.325i)15-s + (−1.34 − 4.13i)16-s + (0.937 − 5.91i)17-s + ⋯
L(s)  = 1  + (−0.995 − 0.323i)2-s + (−1.09 − 1.09i)3-s + (0.0765 + 0.0556i)4-s + (−0.203 + 0.280i)5-s + (0.737 + 1.44i)6-s + (0.802 − 1.57i)7-s + (0.556 + 0.766i)8-s + 1.40i·9-s + (0.293 − 0.212i)10-s + (−0.162 − 0.0257i)11-s + (−0.0229 − 0.144i)12-s + (−0.224 + 0.114i)13-s + (−1.30 + 1.30i)14-s + (0.530 − 0.0840i)15-s + (−0.335 − 1.03i)16-s + (0.227 − 1.43i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.520 + 0.853i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.520 + 0.853i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41\)
Sign: $-0.520 + 0.853i$
Analytic conductor: \(0.327386\)
Root analytic conductor: \(0.572177\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{41} (21, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 41,\ (\ :1/2),\ -0.520 + 0.853i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.170582 - 0.303789i\)
\(L(\frac12)\) \(\approx\) \(0.170582 - 0.303789i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad41 \( 1 + (-6.21 - 1.55i)T \)
good2 \( 1 + (1.40 + 0.457i)T + (1.61 + 1.17i)T^{2} \)
3 \( 1 + (1.90 + 1.90i)T + 3iT^{2} \)
5 \( 1 + (0.455 - 0.626i)T + (-1.54 - 4.75i)T^{2} \)
7 \( 1 + (-2.12 + 4.16i)T + (-4.11 - 5.66i)T^{2} \)
11 \( 1 + (0.538 + 0.0852i)T + (10.4 + 3.39i)T^{2} \)
13 \( 1 + (0.808 - 0.411i)T + (7.64 - 10.5i)T^{2} \)
17 \( 1 + (-0.937 + 5.91i)T + (-16.1 - 5.25i)T^{2} \)
19 \( 1 + (-3.90 - 1.98i)T + (11.1 + 15.3i)T^{2} \)
23 \( 1 + (0.323 - 0.995i)T + (-18.6 - 13.5i)T^{2} \)
29 \( 1 + (-0.193 - 1.21i)T + (-27.5 + 8.96i)T^{2} \)
31 \( 1 + (-1.22 + 0.893i)T + (9.57 - 29.4i)T^{2} \)
37 \( 1 + (-5.87 - 4.26i)T + (11.4 + 35.1i)T^{2} \)
43 \( 1 + (5.91 + 1.92i)T + (34.7 + 25.2i)T^{2} \)
47 \( 1 + (1.80 + 3.53i)T + (-27.6 + 38.0i)T^{2} \)
53 \( 1 + (-0.837 - 5.28i)T + (-50.4 + 16.3i)T^{2} \)
59 \( 1 + (-2.74 + 8.44i)T + (-47.7 - 34.6i)T^{2} \)
61 \( 1 + (-1.31 + 0.428i)T + (49.3 - 35.8i)T^{2} \)
67 \( 1 + (5.56 - 0.881i)T + (63.7 - 20.7i)T^{2} \)
71 \( 1 + (1.07 + 0.170i)T + (67.5 + 21.9i)T^{2} \)
73 \( 1 - 5.61iT - 73T^{2} \)
79 \( 1 + (-8.62 - 8.62i)T + 79iT^{2} \)
83 \( 1 + 13.1T + 83T^{2} \)
89 \( 1 + (0.885 - 1.73i)T + (-52.3 - 72.0i)T^{2} \)
97 \( 1 + (1.91 - 0.303i)T + (92.2 - 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.52550290175906850670904491295, −14.26120891315344267369419804587, −13.39601410666202511683757202766, −11.64997475057130492898825374140, −11.07748584736420599724615087112, −9.873876619141543982769833970438, −7.79125557000754476571306126392, −7.15315027103536333678825845513, −5.06371086932244509324289551117, −1.06504499463299459179779644215, 4.58568720787821748340612848802, 5.88487121978187928859910847411, 8.103777273704450978782947954027, 9.155867511014742541665668274654, 10.31140457529984197977592826835, 11.51883728616917186983377722345, 12.58232684152045516294357853041, 14.87592010312843119606663684375, 15.78257907916129480269973431370, 16.55105300105210332969373269346

Graph of the $Z$-function along the critical line