| L(s) = 1 | + 2·2-s + 3·4-s + 2·7-s + 4·8-s − 6·11-s − 10·13-s + 4·14-s + 5·16-s − 2·19-s − 12·22-s − 20·26-s + 6·28-s − 6·29-s − 8·31-s + 6·32-s + 2·37-s − 4·38-s − 12·41-s − 4·43-s − 18·44-s − 12·47-s + 49-s − 30·52-s − 6·53-s + 8·56-s − 12·58-s − 18·59-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 3/2·4-s + 0.755·7-s + 1.41·8-s − 1.80·11-s − 2.77·13-s + 1.06·14-s + 5/4·16-s − 0.458·19-s − 2.55·22-s − 3.92·26-s + 1.13·28-s − 1.11·29-s − 1.43·31-s + 1.06·32-s + 0.328·37-s − 0.648·38-s − 1.87·41-s − 0.609·43-s − 2.71·44-s − 1.75·47-s + 1/7·49-s − 4.16·52-s − 0.824·53-s + 1.06·56-s − 1.57·58-s − 2.34·59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16402500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16402500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.061060542320696669377621734421, −7.65738815810577255045767667326, −7.41525961768152022699127735617, −7.40204160837163369580095951894, −6.62984932130217896910220541132, −6.49523578958426645075150725494, −5.80100682792637413061730186690, −5.48797342530150237349680401479, −5.07179135242880595502032433486, −4.93697459808850796344389738166, −4.64392000129370050832298859429, −4.32766533239264698960746386296, −3.47050978912644775388093663017, −3.22386322593479821925527512299, −2.85531147115277794387818491254, −2.18166200778727666782706340477, −2.01954065663644059984387200566, −1.59753729233013532347116786075, 0, 0,
1.59753729233013532347116786075, 2.01954065663644059984387200566, 2.18166200778727666782706340477, 2.85531147115277794387818491254, 3.22386322593479821925527512299, 3.47050978912644775388093663017, 4.32766533239264698960746386296, 4.64392000129370050832298859429, 4.93697459808850796344389738166, 5.07179135242880595502032433486, 5.48797342530150237349680401479, 5.80100682792637413061730186690, 6.49523578958426645075150725494, 6.62984932130217896910220541132, 7.40204160837163369580095951894, 7.41525961768152022699127735617, 7.65738815810577255045767667326, 8.061060542320696669377621734421