Properties

Label 8-4032e4-1.1-c1e4-0-10
Degree $8$
Conductor $26429082.934\times 10^{7}$
Sign $1$
Analytic cond. $1.07446\times 10^{6}$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 16·13-s − 16·19-s − 20·37-s − 28·43-s + 10·49-s + 16·61-s − 28·67-s − 64·91-s − 40·97-s + 16·103-s + 52·109-s + 127-s + 131-s + 64·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 128·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 1.51·7-s + 4.43·13-s − 3.67·19-s − 3.28·37-s − 4.26·43-s + 10/7·49-s + 2.04·61-s − 3.42·67-s − 6.70·91-s − 4.06·97-s + 1.57·103-s + 4.98·109-s + 0.0887·127-s + 0.0873·131-s + 5.54·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 9.84·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1.07446\times 10^{6}\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.290952553\)
\(L(\frac12)\) \(\approx\) \(1.290952553\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_1$ \( ( 1 + T )^{4} \)
good5$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )( 1 + 8 T^{2} + p^{2} T^{4} ) \)
11$C_2^3$ \( 1 - 206 T^{4} + p^{4} T^{8} \)
13$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
19$C_2^2$ \( ( 1 + 8 T + 32 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 44 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^3$ \( 1 - 1646 T^{4} + p^{4} T^{8} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
41$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2$ \( ( 1 + p T^{2} )^{4} \)
53$C_2^3$ \( 1 - 5582 T^{4} + p^{4} T^{8} \)
59$C_2^3$ \( 1 - 4046 T^{4} + p^{4} T^{8} \)
61$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 92 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )^{2}( 1 + 16 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - p T^{2} )^{4} \)
83$C_2^3$ \( 1 + 8722 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.90941006466283723664453798427, −5.86311682642044434272296251452, −5.86305698738240146533915991268, −5.33028258093053417328860863069, −5.23321677984293696802096041929, −5.14828387858008289339494625226, −4.55911885750188444370028787459, −4.50396442657349809579027122989, −4.25843238954037159629405639631, −4.18352806242583437148571878432, −3.98686072008818576098137874708, −3.42574705865315681205565319167, −3.42291226016467968963239975250, −3.41714937847170717130933719313, −3.32701044593420191966898336174, −3.14676676469055961882837740629, −2.51834235423621424738422275888, −2.35494525930556079659087333845, −1.93683646412438082399957755095, −1.80215997049526176719355365312, −1.62888437451601816455697276571, −1.40808762023501475524035457687, −1.02099167244626558750972894805, −0.44751470645164086790801955248, −0.23237381149250893244111173347, 0.23237381149250893244111173347, 0.44751470645164086790801955248, 1.02099167244626558750972894805, 1.40808762023501475524035457687, 1.62888437451601816455697276571, 1.80215997049526176719355365312, 1.93683646412438082399957755095, 2.35494525930556079659087333845, 2.51834235423621424738422275888, 3.14676676469055961882837740629, 3.32701044593420191966898336174, 3.41714937847170717130933719313, 3.42291226016467968963239975250, 3.42574705865315681205565319167, 3.98686072008818576098137874708, 4.18352806242583437148571878432, 4.25843238954037159629405639631, 4.50396442657349809579027122989, 4.55911885750188444370028787459, 5.14828387858008289339494625226, 5.23321677984293696802096041929, 5.33028258093053417328860863069, 5.86305698738240146533915991268, 5.86311682642044434272296251452, 5.90941006466283723664453798427

Graph of the $Z$-function along the critical line