Properties

Label 8-4032e4-1.1-c1e4-0-20
Degree $8$
Conductor $26429082.934\times 10^{7}$
Sign $1$
Analytic cond. $1.07446\times 10^{6}$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s + 4·25-s + 32·37-s − 8·43-s − 2·49-s + 32·67-s + 16·79-s − 16·109-s + 8·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 4·169-s + 173-s + 16·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯
L(s)  = 1  + 1.51·7-s + 4/5·25-s + 5.26·37-s − 1.21·43-s − 2/7·49-s + 3.90·67-s + 1.80·79-s − 1.53·109-s + 8/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4/13·169-s + 0.0760·173-s + 1.20·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1.07446\times 10^{6}\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(7.362616355\)
\(L(\frac12)\) \(\approx\) \(7.362616355\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 22 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 28 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 40 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 46 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 56 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
71$C_2^2$ \( ( 1 - 124 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 + 118 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 170 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.86130029350441993633685984980, −5.78822721355972984641798936482, −5.78506192910887284201842792161, −5.16814440814091050452836183426, −4.97025084353375584785565688759, −4.93606654516407299848199225051, −4.88163990796684336707337830835, −4.82545676169597095628216853129, −4.26089802773000417491322999719, −4.19348234646654936414351659543, −4.05537498601006939298680794673, −3.73394319421718863815917825658, −3.58941020542083289872623269653, −3.36603570331381972522467523265, −2.94335505012381750539994897876, −2.78885286239999672440940975005, −2.52986387098497523754355384376, −2.38599325909813602018717448420, −2.15089762282118133501820677163, −1.91168199655078263376519365729, −1.44950482660292942147825198659, −1.30140248096369415620708328802, −0.977914841770974440464099890936, −0.75311999981005301081181906987, −0.38412651392809865137391281520, 0.38412651392809865137391281520, 0.75311999981005301081181906987, 0.977914841770974440464099890936, 1.30140248096369415620708328802, 1.44950482660292942147825198659, 1.91168199655078263376519365729, 2.15089762282118133501820677163, 2.38599325909813602018717448420, 2.52986387098497523754355384376, 2.78885286239999672440940975005, 2.94335505012381750539994897876, 3.36603570331381972522467523265, 3.58941020542083289872623269653, 3.73394319421718863815917825658, 4.05537498601006939298680794673, 4.19348234646654936414351659543, 4.26089802773000417491322999719, 4.82545676169597095628216853129, 4.88163990796684336707337830835, 4.93606654516407299848199225051, 4.97025084353375584785565688759, 5.16814440814091050452836183426, 5.78506192910887284201842792161, 5.78822721355972984641798936482, 5.86130029350441993633685984980

Graph of the $Z$-function along the critical line