L(s) = 1 | + 0.646·5-s − i·7-s + 3.09i·11-s
− 0.913i·13-s − 6.77i·17-s − 5.29·19-s
+ 2.53·23-s − 4.58·25-s − 9.93·29-s
+ 9.16i·31-s − 0.646i·35-s + 7.84i·37-s
+ 9.01i·41-s + 12.2·43-s − 5.65·47-s
+ ⋯
|
L(s) = 1 | + 0.288·5-s − 0.377i·7-s + 0.933i·11-s
− 0.253i·13-s − 1.64i·17-s − 1.21·19-s
+ 0.528·23-s − 0.916·25-s − 1.84·29-s
+ 1.64i·31-s − 0.109i·35-s + 1.28i·37-s
+ 1.40i·41-s + 1.86·43-s − 0.825·47-s
+ ⋯
|
\[\begin{aligned}
\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr
=\mathstrut & (-0.639 - 0.769i)\, \overline{\Lambda}(2-s)
\end{aligned}
\]
\[\begin{aligned}
\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr
=\mathstrut & (-0.639 - 0.769i)\, \overline{\Lambda}(1-s)
\end{aligned}
\]
\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]
where, for $p \notin \{2,\;3,\;7\}$,
\(F_p\) is a polynomial of degree 2. If $p \in \{2,\;3,\;7\}$, then $F_p$ is a polynomial of degree at most 1.
| $p$ | $F_p$ |
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + iT \) |
good | 5 | \( 1 - 0.646T + 5T^{2} \) |
| 11 | \( 1 - 3.09iT - 11T^{2} \) |
| 13 | \( 1 + 0.913iT - 13T^{2} \) |
| 17 | \( 1 + 6.77iT - 17T^{2} \) |
| 19 | \( 1 + 5.29T + 19T^{2} \) |
| 23 | \( 1 - 2.53T + 23T^{2} \) |
| 29 | \( 1 + 9.93T + 29T^{2} \) |
| 31 | \( 1 - 9.16iT - 31T^{2} \) |
| 37 | \( 1 - 7.84iT - 37T^{2} \) |
| 41 | \( 1 - 9.01iT - 41T^{2} \) |
| 43 | \( 1 - 12.2T + 43T^{2} \) |
| 47 | \( 1 + 5.65T + 47T^{2} \) |
| 53 | \( 1 + 1.15T + 53T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 - 6.92iT - 61T^{2} \) |
| 67 | \( 1 - 7.84T + 67T^{2} \) |
| 71 | \( 1 + 5.36T + 71T^{2} \) |
| 73 | \( 1 + 0.417T + 73T^{2} \) |
| 79 | \( 1 + 10.7iT - 79T^{2} \) |
| 83 | \( 1 - 15.9iT - 83T^{2} \) |
| 89 | \( 1 + 9.01iT - 89T^{2} \) |
| 97 | \( 1 + 11.5T + 97T^{2} \) |
show more | |
show less | |
\[\begin{aligned}
L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}
\end{aligned}\]
Imaginary part of the first few zeros on the critical line
−8.761454829440315427312026514266, −7.86570891407413334116174257443, −7.20215241438318370304661948790, −6.66003602606713845253503497965, −5.70170264711434742441284295696, −4.89493219865632289141054834959, −4.29088887866180667353244614219, −3.21446846022159707667357579574, −2.33079324876759495785543143678, −1.30953129224655850211064709490,
0.19018907050634605734134476642, 1.77561053162430344545300296820, 2.40856050812174339877273902988, 3.80360536159668173692672699252, 4.06181116936448422049998995701, 5.53961408768790835428854119231, 5.83941185018851408859864939784, 6.53435893307611474833445545870, 7.59593465144466780710787490773, 8.175336157242274073580008369034