L(s) = 1 | + 3.09·5-s + i·7-s − 0.646i·11-s
− 4.37i·13-s − 0.295i·17-s + 5.29·19-s
+ 3.94·23-s + 4.58·25-s − 5.03·29-s
+ 9.16i·31-s + 3.09i·35-s − 2.55i·37-s
− 10.4i·41-s + 1.63·43-s + 5.65·47-s
+ ⋯
|
L(s) = 1 | + 1.38·5-s + 0.377i·7-s − 0.194i·11-s
− 1.21i·13-s − 0.0715i·17-s + 1.21·19-s
+ 0.823·23-s + 0.916·25-s − 0.934·29-s
+ 1.64i·31-s + 0.523i·35-s − 0.419i·37-s
− 1.62i·41-s + 0.249·43-s + 0.825·47-s
+ ⋯
|
\[\begin{aligned}
\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr
=\mathstrut & (0.938 + 0.346i)\, \overline{\Lambda}(2-s)
\end{aligned}
\]
\[\begin{aligned}
\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr
=\mathstrut & (0.938 + 0.346i)\, \overline{\Lambda}(1-s)
\end{aligned}
\]
\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]
where, for $p \notin \{2,\;3,\;7\}$,
\(F_p\) is a polynomial of degree 2. If $p \in \{2,\;3,\;7\}$, then $F_p$ is a polynomial of degree at most 1.
| $p$ | $F_p$ |
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 - iT \) |
good | 5 | \( 1 - 3.09T + 5T^{2} \) |
| 11 | \( 1 + 0.646iT - 11T^{2} \) |
| 13 | \( 1 + 4.37iT - 13T^{2} \) |
| 17 | \( 1 + 0.295iT - 17T^{2} \) |
| 19 | \( 1 - 5.29T + 19T^{2} \) |
| 23 | \( 1 - 3.94T + 23T^{2} \) |
| 29 | \( 1 + 5.03T + 29T^{2} \) |
| 31 | \( 1 - 9.16iT - 31T^{2} \) |
| 37 | \( 1 + 2.55iT - 37T^{2} \) |
| 41 | \( 1 + 10.4iT - 41T^{2} \) |
| 43 | \( 1 - 1.63T + 43T^{2} \) |
| 47 | \( 1 - 5.65T + 47T^{2} \) |
| 53 | \( 1 - 8.64T + 53T^{2} \) |
| 59 | \( 1 - 59T^{2} \) |
| 61 | \( 1 + 6.92iT - 61T^{2} \) |
| 67 | \( 1 - 2.55T + 67T^{2} \) |
| 71 | \( 1 + 1.11T + 71T^{2} \) |
| 73 | \( 1 + 9.58T + 73T^{2} \) |
| 79 | \( 1 + 16.7iT - 79T^{2} \) |
| 83 | \( 1 - 8.50iT - 83T^{2} \) |
| 89 | \( 1 - 10.4iT - 89T^{2} \) |
| 97 | \( 1 + 2.41T + 97T^{2} \) |
show more | |
show less | |
\[\begin{aligned}
L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}
\end{aligned}\]
Imaginary part of the first few zeros on the critical line
−8.625268176607400406730932685583, −7.55222064647235483342162987196, −6.97973369079446454514295356664, −5.92793574849634871239310232295, −5.50079204180040841871972895416, −5.00605107300911761079948680600, −3.56770362408708980483863939893, −2.84646165518699784038249342948, −1.94838550390134719203087879337, −0.880122482303472240044464635947,
1.11144066092977623967537942955, 1.98020939971037556012887490198, 2.83616340736826752750846085432, 3.97015570602627701201767208045, 4.77042010680623732791264680160, 5.64253195822907093500451820381, 6.17069412830034127847430221163, 7.05344619921147804855960833102, 7.54968449734941311873315414754, 8.680694140592326464874584575136