Properties

Degree 2
Conductor $ 2^{6} \cdot 3^{2} \cdot 7 $
Sign $-0.816 + 0.577i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2.56i·5-s + i·7-s + 1.15·11-s + 0.578·13-s + 5.39i·17-s − 6.20i·19-s − 7.62·23-s − 1.57·25-s + 1.41i·29-s − 5.04i·31-s + 2.56·35-s − 9.83·37-s − 6.21i·41-s − 11.2i·43-s + 11.0·47-s + ⋯
L(s)  = 1  − 1.14i·5-s + 0.377i·7-s + 0.346·11-s + 0.160·13-s + 1.30i·17-s − 1.42i·19-s − 1.58·23-s − 0.315·25-s + 0.262i·29-s − 0.906i·31-s + 0.433·35-s − 1.61·37-s − 0.970i·41-s − 1.71i·43-s + 1.61·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.816 + 0.577i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.816 + 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
\( \varepsilon \)  =  $-0.816 + 0.577i$
motivic weight  =  \(1\)
character  :  $\chi_{4032} (575, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 4032,\ (\ :1/2),\ -0.816 + 0.577i)$
$L(1)$  $\approx$  $1.015417558$
$L(\frac12)$  $\approx$  $1.015417558$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - iT \)
good5 \( 1 + 2.56iT - 5T^{2} \)
11 \( 1 - 1.15T + 11T^{2} \)
13 \( 1 - 0.578T + 13T^{2} \)
17 \( 1 - 5.39iT - 17T^{2} \)
19 \( 1 + 6.20iT - 19T^{2} \)
23 \( 1 + 7.62T + 23T^{2} \)
29 \( 1 - 1.41iT - 29T^{2} \)
31 \( 1 + 5.04iT - 31T^{2} \)
37 \( 1 + 9.83T + 37T^{2} \)
41 \( 1 + 6.21iT - 41T^{2} \)
43 \( 1 + 11.2iT - 43T^{2} \)
47 \( 1 - 11.0T + 47T^{2} \)
53 \( 1 - 4.53iT - 53T^{2} \)
59 \( 1 + 4.83T + 59T^{2} \)
61 \( 1 + 0.951T + 61T^{2} \)
67 \( 1 - 2.78iT - 67T^{2} \)
71 \( 1 + 3.68T + 71T^{2} \)
73 \( 1 - 14.0T + 73T^{2} \)
79 \( 1 + 12.8iT - 79T^{2} \)
83 \( 1 + 8.77T + 83T^{2} \)
89 \( 1 - 5.68iT - 89T^{2} \)
97 \( 1 + 12.8T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.370300712589836000329262014342, −7.49912354747355208696218323431, −6.62849825400165655626852407153, −5.78112542337493407347588125024, −5.24921193929071043720371649670, −4.27131177856948784425301766921, −3.75004434274696007627680273143, −2.37971237986761298207558292979, −1.54286010113212644936170196913, −0.28775773210053779626743692482, 1.36891454208636501227539696840, 2.47977778246253514303772233892, 3.35023215003655398456363467806, 3.99495935530644060217770613224, 5.00151657578354335755051840934, 5.97838784709680202788639144234, 6.55405632206857847108717100837, 7.26004692722898980882350922399, 7.87323297130115347487316062509, 8.639712757597165935848855956305

Graph of the $Z$-function along the critical line