Properties

Label 8-4032e4-1.1-c1e4-0-2
Degree $8$
Conductor $26429082.934\times 10^{7}$
Sign $1$
Analytic cond. $1.07446\times 10^{6}$
Root an. cond. $5.67412$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 12·19-s + 6·25-s − 8·29-s + 12·37-s + 8·47-s + 6·49-s + 16·53-s + 16·59-s − 8·83-s − 32·103-s − 16·113-s + 34·121-s + 127-s + 131-s − 24·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 12·169-s + 173-s + 12·175-s + 179-s + ⋯
L(s)  = 1  + 0.755·7-s − 2.75·19-s + 6/5·25-s − 1.48·29-s + 1.97·37-s + 1.16·47-s + 6/7·49-s + 2.19·53-s + 2.08·59-s − 0.878·83-s − 3.15·103-s − 1.50·113-s + 3.09·121-s + 0.0887·127-s + 0.0873·131-s − 2.08·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.923·169-s + 0.0760·173-s + 0.907·175-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{24} \cdot 3^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{24} \cdot 3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1.07446\times 10^{6}\)
Root analytic conductor: \(5.67412\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{24} \cdot 3^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.9439027850\)
\(L(\frac12)\) \(\approx\) \(0.9439027850\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7$D_{4}$ \( 1 - 2 T - 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
good5$C_2^2 \wr C_2$ \( 1 - 6 T^{2} + 42 T^{4} - 6 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2 \wr C_2$ \( 1 - 34 T^{2} + 514 T^{4} - 34 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2^2 \wr C_2$ \( 1 - 12 T^{2} + 102 T^{4} - 12 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2^2 \wr C_2$ \( 1 - 22 T^{2} + 682 T^{4} - 22 p^{2} T^{6} + p^{4} T^{8} \)
19$D_{4}$ \( ( 1 + 6 T + 30 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2 \wr C_2$ \( 1 - 82 T^{2} + 2722 T^{4} - 82 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
31$C_2$ \( ( 1 + p T^{2} )^{4} \)
37$D_{4}$ \( ( 1 - 6 T + 66 T^{2} - 6 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2 \wr C_2$ \( 1 - 102 T^{2} + 5130 T^{4} - 102 p^{2} T^{6} + p^{4} T^{8} \)
43$C_2^2 \wr C_2$ \( 1 - 24 T^{2} + 3774 T^{4} - 24 p^{2} T^{6} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 - 4 T + 30 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_{4}$ \( ( 1 - 8 T + 54 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
61$C_2^2 \wr C_2$ \( 1 - 132 T^{2} + 10710 T^{4} - 132 p^{2} T^{6} + p^{4} T^{8} \)
67$C_2^2 \wr C_2$ \( 1 - 144 T^{2} + 10830 T^{4} - 144 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2^2 \wr C_2$ \( 1 - 114 T^{2} + 8418 T^{4} - 114 p^{2} T^{6} + p^{4} T^{8} \)
73$C_2^2 \wr C_2$ \( 1 - 236 T^{2} + 24310 T^{4} - 236 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2 \wr C_2$ \( 1 - 288 T^{2} + 33150 T^{4} - 288 p^{2} T^{6} + p^{4} T^{8} \)
83$D_{4}$ \( ( 1 + 4 T + 102 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2^2 \wr C_2$ \( 1 - 294 T^{2} + 36618 T^{4} - 294 p^{2} T^{6} + p^{4} T^{8} \)
97$C_2^2 \wr C_2$ \( 1 - 204 T^{2} + 28950 T^{4} - 204 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.91612143470245861302994207363, −5.71099643029847882081901224974, −5.48146013074147324339208885807, −5.47846367953164524373357654646, −5.43852326401037566459308099573, −4.72636724881449128168885727011, −4.70893279463178414689330424258, −4.63353129081826205525162296349, −4.36516226553020143976959940763, −4.13731957043879607625317647919, −3.97678900870088521952036143642, −3.95697952201924163589771747619, −3.47437646706531176724851991023, −3.42134106462095193158855587404, −2.90405524661069436842178076853, −2.83788718755514118861480501929, −2.58928783465127522574550550143, −2.21089357234790586987892699902, −2.09759799297850389305207675311, −1.94840963133941337043891174465, −1.80155739626348149836074707189, −1.05924310513774597501953971531, −0.896122747319347707841346595754, −0.889226535983573163484876571120, −0.13246836006065582480695438551, 0.13246836006065582480695438551, 0.889226535983573163484876571120, 0.896122747319347707841346595754, 1.05924310513774597501953971531, 1.80155739626348149836074707189, 1.94840963133941337043891174465, 2.09759799297850389305207675311, 2.21089357234790586987892699902, 2.58928783465127522574550550143, 2.83788718755514118861480501929, 2.90405524661069436842178076853, 3.42134106462095193158855587404, 3.47437646706531176724851991023, 3.95697952201924163589771747619, 3.97678900870088521952036143642, 4.13731957043879607625317647919, 4.36516226553020143976959940763, 4.63353129081826205525162296349, 4.70893279463178414689330424258, 4.72636724881449128168885727011, 5.43852326401037566459308099573, 5.47846367953164524373357654646, 5.48146013074147324339208885807, 5.71099643029847882081901224974, 5.91612143470245861302994207363

Graph of the $Z$-function along the critical line