Properties

Degree 2
Conductor $ 2^{6} \cdot 3^{2} \cdot 7 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 7-s + 6·11-s + 6·13-s − 2·17-s + 4·19-s − 2·23-s − 25-s − 8·29-s − 4·31-s + 2·35-s + 6·37-s + 10·41-s − 4·43-s + 4·47-s + 49-s + 4·53-s − 12·55-s − 12·59-s + 2·61-s − 12·65-s + 12·67-s − 6·71-s − 2·73-s − 6·77-s + 8·79-s + 4·85-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.377·7-s + 1.80·11-s + 1.66·13-s − 0.485·17-s + 0.917·19-s − 0.417·23-s − 1/5·25-s − 1.48·29-s − 0.718·31-s + 0.338·35-s + 0.986·37-s + 1.56·41-s − 0.609·43-s + 0.583·47-s + 1/7·49-s + 0.549·53-s − 1.61·55-s − 1.56·59-s + 0.256·61-s − 1.48·65-s + 1.46·67-s − 0.712·71-s − 0.234·73-s − 0.683·77-s + 0.900·79-s + 0.433·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4032 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(4032\)    =    \(2^{6} \cdot 3^{2} \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{4032} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 4032,\ (\ :1/2),\ 1)\)
\(L(1)\)  \(\approx\)  \(1.773018634\)
\(L(\frac12)\)  \(\approx\)  \(1.773018634\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 14 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.481230422127386542430938775743, −7.67675156505404098748222537011, −7.02225335608143008119808893311, −6.18904954467597583465872191621, −5.72096147163059808933542492052, −4.29551882482260666462775014234, −3.86692381983966648059599058083, −3.29743767977860739452763883672, −1.80228330876561683103867681836, −0.798602691922161062936643959711, 0.798602691922161062936643959711, 1.80228330876561683103867681836, 3.29743767977860739452763883672, 3.86692381983966648059599058083, 4.29551882482260666462775014234, 5.72096147163059808933542492052, 6.18904954467597583465872191621, 7.02225335608143008119808893311, 7.67675156505404098748222537011, 8.481230422127386542430938775743

Graph of the $Z$-function along the critical line