Properties

Label 4-4030e2-1.1-c1e2-0-0
Degree $4$
Conductor $16240900$
Sign $1$
Analytic cond. $1035.53$
Root an. cond. $5.67271$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·3-s + 3·4-s − 2·5-s − 4·6-s − 7-s − 4·8-s + 2·9-s + 4·10-s − 6·11-s + 6·12-s + 2·13-s + 2·14-s − 4·15-s + 5·16-s + 7·17-s − 4·18-s − 3·19-s − 6·20-s − 2·21-s + 12·22-s − 5·23-s − 8·24-s + 3·25-s − 4·26-s + 6·27-s − 3·28-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.15·3-s + 3/2·4-s − 0.894·5-s − 1.63·6-s − 0.377·7-s − 1.41·8-s + 2/3·9-s + 1.26·10-s − 1.80·11-s + 1.73·12-s + 0.554·13-s + 0.534·14-s − 1.03·15-s + 5/4·16-s + 1.69·17-s − 0.942·18-s − 0.688·19-s − 1.34·20-s − 0.436·21-s + 2.55·22-s − 1.04·23-s − 1.63·24-s + 3/5·25-s − 0.784·26-s + 1.15·27-s − 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16240900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16240900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(16240900\)    =    \(2^{2} \cdot 5^{2} \cdot 13^{2} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(1035.53\)
Root analytic conductor: \(5.67271\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 16240900,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.726028963\)
\(L(\frac12)\) \(\approx\) \(1.726028963\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
5$C_1$ \( ( 1 + T )^{2} \)
13$C_1$ \( ( 1 - T )^{2} \)
31$C_1$ \( ( 1 + T )^{2} \)
good3$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + T + 3 T^{2} + p T^{3} + p^{2} T^{4} \)
11$C_4$ \( 1 + 6 T + 26 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
17$D_{4}$ \( 1 - 7 T + 45 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 + 3 T + 9 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
23$D_{4}$ \( 1 + 5 T + 41 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
29$C_4$ \( 1 - 17 T + 129 T^{2} - 17 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 9 T + 63 T^{2} + 9 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 - 10 T + 62 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 - 6 T + 90 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 + 11 T + 93 T^{2} + 11 p T^{3} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
59$D_{4}$ \( 1 - 7 T + 119 T^{2} - 7 p T^{3} + p^{2} T^{4} \)
61$D_{4}$ \( 1 + 7 T + 33 T^{2} + 7 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 8 T + 130 T^{2} - 8 p T^{3} + p^{2} T^{4} \)
71$C_4$ \( 1 - 4 T + 66 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 2 T + 142 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 24 T + 282 T^{2} - 24 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 - 3 T + 157 T^{2} - 3 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 - 15 T + 223 T^{2} - 15 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 21 T + 303 T^{2} + 21 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.366938359377628494836474412651, −8.179341830867882837611224862542, −8.041697403633572916401856560805, −7.977646860714968706792712680464, −7.33558156980303238954473259120, −6.98039841695498363017039452487, −6.60784931159788051487961453598, −6.35764338974755101730257871238, −5.59461382075425144420489285261, −5.43922343435350674725800873453, −4.89561552692519194667259149296, −4.30025659602895525412134912434, −3.86890472346090310527243860383, −3.42297614653404103395128370945, −2.89244802660586351583907479712, −2.79532279395716812111339148804, −2.30136046449261034835897949647, −1.71055631895506360067940748217, −0.807348533499459926017870989737, −0.61849767030666140764465821385, 0.61849767030666140764465821385, 0.807348533499459926017870989737, 1.71055631895506360067940748217, 2.30136046449261034835897949647, 2.79532279395716812111339148804, 2.89244802660586351583907479712, 3.42297614653404103395128370945, 3.86890472346090310527243860383, 4.30025659602895525412134912434, 4.89561552692519194667259149296, 5.43922343435350674725800873453, 5.59461382075425144420489285261, 6.35764338974755101730257871238, 6.60784931159788051487961453598, 6.98039841695498363017039452487, 7.33558156980303238954473259120, 7.977646860714968706792712680464, 8.041697403633572916401856560805, 8.179341830867882837611224862542, 8.366938359377628494836474412651

Graph of the $Z$-function along the critical line