Properties

Degree 2
Conductor $ 13 \cdot 31 $
Sign $0.953 + 0.301i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 1.44i·2-s + 0.0382·3-s − 0.100·4-s − 3.85i·5-s + 0.0554i·6-s − 1.66i·7-s + 2.75i·8-s − 2.99·9-s + 5.59·10-s − 1.88i·11-s − 0.00384·12-s + (1.08 − 3.43i)13-s + 2.40·14-s − 0.147i·15-s − 4.19·16-s + 3.75·17-s + ⋯
L(s)  = 1  + 1.02i·2-s + 0.0220·3-s − 0.0503·4-s − 1.72i·5-s + 0.0226i·6-s − 0.628i·7-s + 0.973i·8-s − 0.999·9-s + 1.76·10-s − 0.566i·11-s − 0.00111·12-s + (0.301 − 0.953i)13-s + 0.643·14-s − 0.0381i·15-s − 1.04·16-s + 0.909·17-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 + 0.301i)\, \overline{\Lambda}(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 403 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.953 + 0.301i)\, \overline{\Lambda}(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(403\)    =    \(13 \cdot 31\)
\( \varepsilon \)  =  $0.953 + 0.301i$
motivic weight  =  \(1\)
character  :  $\chi_{403} (311, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 403,\ (\ :1/2),\ 0.953 + 0.301i)$
$L(1)$  $\approx$  $1.37363 - 0.211729i$
$L(\frac12)$  $\approx$  $1.37363 - 0.211729i$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{13,\;31\}$, \(F_p(T)\) is a polynomial of degree 2. If $p \in \{13,\;31\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad13 \( 1 + (-1.08 + 3.43i)T \)
31 \( 1 + iT \)
good2 \( 1 - 1.44iT - 2T^{2} \)
3 \( 1 - 0.0382T + 3T^{2} \)
5 \( 1 + 3.85iT - 5T^{2} \)
7 \( 1 + 1.66iT - 7T^{2} \)
11 \( 1 + 1.88iT - 11T^{2} \)
17 \( 1 - 3.75T + 17T^{2} \)
19 \( 1 + 3.26iT - 19T^{2} \)
23 \( 1 - 5.31T + 23T^{2} \)
29 \( 1 - 3.11T + 29T^{2} \)
37 \( 1 - 11.5iT - 37T^{2} \)
41 \( 1 - 7.94iT - 41T^{2} \)
43 \( 1 + 9.24T + 43T^{2} \)
47 \( 1 + 6.97iT - 47T^{2} \)
53 \( 1 - 6.11T + 53T^{2} \)
59 \( 1 - 12.1iT - 59T^{2} \)
61 \( 1 - 1.75T + 61T^{2} \)
67 \( 1 + 7.94iT - 67T^{2} \)
71 \( 1 + 0.735iT - 71T^{2} \)
73 \( 1 + 13.5iT - 73T^{2} \)
79 \( 1 + 5.66T + 79T^{2} \)
83 \( 1 - 13.7iT - 83T^{2} \)
89 \( 1 + 10.2iT - 89T^{2} \)
97 \( 1 - 8.34iT - 97T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−11.38273254614174062813345216825, −10.22179324222868267366938361501, −8.870215906143924106040739041685, −8.408090681681962062337480590180, −7.68359736815646197965724295136, −6.37559923499779255873739449418, −5.40641223564695592750581498102, −4.85194328306705359141015143869, −3.11572100545275452388798437008, −0.939047223363470004914495963438, 2.06046572575067476436516906155, 2.92608673831503691028816730563, 3.78282394472996448841528630712, 5.66531183879857994908749316707, 6.64564015609238126559716533211, 7.40094339122801876023979053539, 8.828600845345598277908040188106, 9.844955990935650629798750531087, 10.58800923155299158985465261114, 11.32807571851903265089601824551

Graph of the $Z$-function along the critical line