Properties

Label 8-403e4-1.1-c0e4-0-0
Degree $8$
Conductor $26376683281$
Sign $1$
Analytic cond. $0.00163624$
Root an. cond. $0.448467$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s + 2·7-s − 6·8-s − 9-s − 4·14-s + 9·16-s + 2·18-s + 2·19-s − 4·25-s + 6·28-s − 12·32-s − 3·36-s − 4·38-s + 2·41-s + 3·49-s + 8·50-s − 12·56-s + 2·59-s − 2·63-s + 18·64-s + 2·67-s − 2·71-s + 6·72-s + 6·76-s + 81-s − 4·82-s + ⋯
L(s)  = 1  − 2·2-s + 3·4-s + 2·7-s − 6·8-s − 9-s − 4·14-s + 9·16-s + 2·18-s + 2·19-s − 4·25-s + 6·28-s − 12·32-s − 3·36-s − 4·38-s + 2·41-s + 3·49-s + 8·50-s − 12·56-s + 2·59-s − 2·63-s + 18·64-s + 2·67-s − 2·71-s + 6·72-s + 6·76-s + 81-s − 4·82-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(13^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(13^{4} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(13^{4} \cdot 31^{4}\)
Sign: $1$
Analytic conductor: \(0.00163624\)
Root analytic conductor: \(0.448467\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 13^{4} \cdot 31^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.1889996987\)
\(L(\frac12)\) \(\approx\) \(0.1889996987\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad13$C_2$ \( ( 1 + T^{2} )^{2} \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
good2$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
3$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
5$C_2$ \( ( 1 + T^{2} )^{4} \)
7$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
11$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
17$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
23$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
29$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
37$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
41$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
43$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
47$C_2$ \( ( 1 + T^{2} )^{4} \)
53$C_2$ \( ( 1 + T^{2} )^{4} \)
59$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
61$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
67$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
71$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
73$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
83$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
89$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
97$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.419997929838757551138900962459, −8.216775647198376174303104780645, −7.88055998241061986020108531661, −7.80136424471324208933566855871, −7.54937358194585242573163224180, −7.50834843972665177469714238890, −6.99341365948518465897903539028, −6.80157891457166250840806925404, −6.34264288123609241439954148522, −6.19859338694373332161603244505, −5.98085371872081457354262675499, −5.53310492123583210019487167153, −5.35443994116059322496251342488, −5.34181723325164253808521418908, −5.32693212338431208144727800978, −4.26209016594983671575054917896, −3.94653302738206801344771665441, −3.87440947248701690403815744092, −3.48762579600775443326674568583, −2.82270671716034486608668257237, −2.66549256429074363496068972055, −2.53886931670367344245009654332, −1.97586661485529291718951358492, −1.60641294567980630786349282588, −0.977486845819645189753550122434, 0.977486845819645189753550122434, 1.60641294567980630786349282588, 1.97586661485529291718951358492, 2.53886931670367344245009654332, 2.66549256429074363496068972055, 2.82270671716034486608668257237, 3.48762579600775443326674568583, 3.87440947248701690403815744092, 3.94653302738206801344771665441, 4.26209016594983671575054917896, 5.32693212338431208144727800978, 5.34181723325164253808521418908, 5.35443994116059322496251342488, 5.53310492123583210019487167153, 5.98085371872081457354262675499, 6.19859338694373332161603244505, 6.34264288123609241439954148522, 6.80157891457166250840806925404, 6.99341365948518465897903539028, 7.50834843972665177469714238890, 7.54937358194585242573163224180, 7.80136424471324208933566855871, 7.88055998241061986020108531661, 8.216775647198376174303104780645, 8.419997929838757551138900962459

Graph of the $Z$-function along the critical line