L(s) = 1 | + 2.85·3-s − 0.0885·5-s − 1.03·7-s + 5.15·9-s − 3.21·11-s − 1.70·13-s − 0.253·15-s − 7.37·17-s
− 19-s − 2.96·21-s − 8.03·23-s − 4.99·25-s + 6.16·27-s + 5.83·29-s + 4.90·31-s − 9.19·33-s
+ 0.0919·35-s − 4.56·37-s − 4.86·39-s + 4.12·41-s − 5.33·43-s − 0.457·45-s − 1.46·47-s − 5.92·49-s
− 21.0·51-s + 53-s + 0.284·55-s + ⋯
|
L(s) = 1 | + 1.64·3-s − 0.0396·5-s − 0.392·7-s + 1.71·9-s − 0.970·11-s − 0.472·13-s − 0.0653·15-s − 1.78·17-s
− 0.229·19-s − 0.646·21-s − 1.67·23-s − 0.998·25-s + 1.18·27-s + 1.08·29-s + 0.881·31-s − 1.59·33-s
+ 0.0155·35-s − 0.751·37-s − 0.779·39-s + 0.644·41-s − 0.813·43-s − 0.0681·45-s − 0.214·47-s − 0.846·49-s
− 2.94·51-s + 0.137·53-s + 0.0384·55-s + ⋯
|
\[\begin{aligned}
\Lambda(s)=\mathstrut & 4028 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr
=\mathstrut & -\, \Lambda(2-s)
\end{aligned}
\]
\[\begin{aligned}
\Lambda(s)=\mathstrut & 4028 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr
=\mathstrut & -\, \Lambda(1-s)
\end{aligned}
\]
\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]
where, for $p \notin \{2,\;19,\;53\}$,
\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;19,\;53\}$, then $F_p$ is a polynomial of degree at most 1.
| $p$ | $F_p$ |
bad | 2 | \( 1 \) |
| 19 | \( 1 + T \) |
| 53 | \( 1 - T \) |
good | 3 | \( 1 - 2.85T + 3T^{2} \) |
| 5 | \( 1 + 0.0885T + 5T^{2} \) |
| 7 | \( 1 + 1.03T + 7T^{2} \) |
| 11 | \( 1 + 3.21T + 11T^{2} \) |
| 13 | \( 1 + 1.70T + 13T^{2} \) |
| 17 | \( 1 + 7.37T + 17T^{2} \) |
| 23 | \( 1 + 8.03T + 23T^{2} \) |
| 29 | \( 1 - 5.83T + 29T^{2} \) |
| 31 | \( 1 - 4.90T + 31T^{2} \) |
| 37 | \( 1 + 4.56T + 37T^{2} \) |
| 41 | \( 1 - 4.12T + 41T^{2} \) |
| 43 | \( 1 + 5.33T + 43T^{2} \) |
| 47 | \( 1 + 1.46T + 47T^{2} \) |
| 59 | \( 1 - 10.3T + 59T^{2} \) |
| 61 | \( 1 + 9.61T + 61T^{2} \) |
| 67 | \( 1 - 4.16T + 67T^{2} \) |
| 71 | \( 1 + 16.1T + 71T^{2} \) |
| 73 | \( 1 - 7.73T + 73T^{2} \) |
| 79 | \( 1 - 1.03T + 79T^{2} \) |
| 83 | \( 1 - 2.95T + 83T^{2} \) |
| 89 | \( 1 + 3.28T + 89T^{2} \) |
| 97 | \( 1 + 4.36T + 97T^{2} \) |
show more | |
show less | |
\[\begin{aligned}
L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}
\end{aligned}\]
Imaginary part of the first few zeros on the critical line
−8.268884470098647340030955906268, −7.56183063314030250068199320544, −6.78288569372943993222025902448, −6.01169488502038124682037052158, −4.75361721381795659049793061406, −4.16215255579618689794848581870, −3.25380457914986638267596535947, −2.43998984957040531687053515648, −1.95567302675646714990980183304, 0,
1.95567302675646714990980183304, 2.43998984957040531687053515648, 3.25380457914986638267596535947, 4.16215255579618689794848581870, 4.75361721381795659049793061406, 6.01169488502038124682037052158, 6.78288569372943993222025902448, 7.56183063314030250068199320544, 8.268884470098647340030955906268