Properties

Label 2-4020-201.200-c1-0-29
Degree $2$
Conductor $4020$
Sign $-0.218 - 0.975i$
Analytic cond. $32.0998$
Root an. cond. $5.66567$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.70 + 0.322i)3-s + 5-s + 1.22i·7-s + (2.79 − 1.09i)9-s + 1.70·11-s + 4.75i·13-s + (−1.70 + 0.322i)15-s + 6.23i·17-s + 7.09·19-s + (−0.396 − 2.09i)21-s − 1.34i·23-s + 25-s + (−4.39 + 2.76i)27-s − 2.58i·29-s + 5.45i·31-s + ⋯
L(s)  = 1  + (−0.982 + 0.186i)3-s + 0.447·5-s + 0.464i·7-s + (0.930 − 0.366i)9-s + 0.513·11-s + 1.31i·13-s + (−0.439 + 0.0833i)15-s + 1.51i·17-s + 1.62·19-s + (−0.0865 − 0.456i)21-s − 0.280i·23-s + 0.200·25-s + (−0.846 + 0.533i)27-s − 0.480i·29-s + 0.980i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4020 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.218 - 0.975i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4020 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.218 - 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4020\)    =    \(2^{2} \cdot 3 \cdot 5 \cdot 67\)
Sign: $-0.218 - 0.975i$
Analytic conductor: \(32.0998\)
Root analytic conductor: \(5.66567\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4020} (401, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4020,\ (\ :1/2),\ -0.218 - 0.975i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.436123299\)
\(L(\frac12)\) \(\approx\) \(1.436123299\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.70 - 0.322i)T \)
5 \( 1 - T \)
67 \( 1 + (0.267 + 8.18i)T \)
good7 \( 1 - 1.22iT - 7T^{2} \)
11 \( 1 - 1.70T + 11T^{2} \)
13 \( 1 - 4.75iT - 13T^{2} \)
17 \( 1 - 6.23iT - 17T^{2} \)
19 \( 1 - 7.09T + 19T^{2} \)
23 \( 1 + 1.34iT - 23T^{2} \)
29 \( 1 + 2.58iT - 29T^{2} \)
31 \( 1 - 5.45iT - 31T^{2} \)
37 \( 1 + 6.93T + 37T^{2} \)
41 \( 1 - 3.76T + 41T^{2} \)
43 \( 1 - 1.89iT - 43T^{2} \)
47 \( 1 + 0.286iT - 47T^{2} \)
53 \( 1 + 3.48T + 53T^{2} \)
59 \( 1 + 0.962iT - 59T^{2} \)
61 \( 1 - 1.51iT - 61T^{2} \)
71 \( 1 + 6.96iT - 71T^{2} \)
73 \( 1 - 0.332T + 73T^{2} \)
79 \( 1 - 8.41iT - 79T^{2} \)
83 \( 1 + 9.17iT - 83T^{2} \)
89 \( 1 + 4.45iT - 89T^{2} \)
97 \( 1 - 9.67iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.922408799474633020864356301438, −7.84556026469553269282025347451, −6.91591103585586741068601130998, −6.39503598859083700637019157013, −5.73491780287326806084968065127, −5.01971275527824129562183731088, −4.20015117518544403997244275452, −3.39155683442798135989240002797, −1.97504419392968637133434658598, −1.22414271922201000278176440100, 0.54815561998006472073611728531, 1.32481136172013319862207098433, 2.68872888049853754529483853556, 3.61618742507027186262863528066, 4.68192464401259906761693183859, 5.44559200718386321580401065343, 5.76990203648172740484468655618, 6.94255812554815118737613760640, 7.26206522147145370966552908402, 8.012947727266431270113223261496

Graph of the $Z$-function along the critical line