Properties

Degree 2
Conductor $ 2 \cdot 3 \cdot 23 \cdot 29 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 8-s + 9-s + 10-s + 5·11-s + 12-s + 3·13-s − 15-s + 16-s + 4·17-s − 18-s + 4·19-s − 20-s − 5·22-s − 23-s − 24-s − 4·25-s − 3·26-s + 27-s − 29-s + 30-s + 5·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.50·11-s + 0.288·12-s + 0.832·13-s − 0.258·15-s + 1/4·16-s + 0.970·17-s − 0.235·18-s + 0.917·19-s − 0.223·20-s − 1.06·22-s − 0.208·23-s − 0.204·24-s − 4/5·25-s − 0.588·26-s + 0.192·27-s − 0.185·29-s + 0.182·30-s + 0.898·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{4002} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 4002,\ (\ :1/2),\ 1)\)
\(L(1)\)  \(\approx\)  \(1.958439422\)
\(L(\frac12)\)  \(\approx\)  \(1.958439422\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;23,\;29\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;23,\;29\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
23 \( 1 + T \)
29 \( 1 + T \)
good5 \( 1 + T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 - 3 T + p T^{2} \)
17 \( 1 - 4 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 - 10 T + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 + 7 T + p T^{2} \)
61 \( 1 - T + p T^{2} \)
67 \( 1 + 13 T + p T^{2} \)
71 \( 1 + 5 T + p T^{2} \)
73 \( 1 + 4 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 - 18 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.582903535103051671220586523393, −7.70107674785881678622186592031, −7.31715568476819843350858462741, −6.32891082747463643586427384833, −5.74985936346118792546956940632, −4.41955874685816877821382920981, −3.67659661269898197194758563403, −3.03538156105061200759572949400, −1.70965449751274279349505212042, −0.946094456404816744025198268194, 0.946094456404816744025198268194, 1.70965449751274279349505212042, 3.03538156105061200759572949400, 3.67659661269898197194758563403, 4.41955874685816877821382920981, 5.74985936346118792546956940632, 6.32891082747463643586427384833, 7.31715568476819843350858462741, 7.70107674785881678622186592031, 8.582903535103051671220586523393

Graph of the $Z$-function along the critical line