Properties

Label 4-20e4-1.1-c5e2-0-15
Degree $4$
Conductor $160000$
Sign $1$
Analytic cond. $4115.67$
Root an. cond. $8.00958$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·3-s + 52·7-s + 138·9-s − 560·11-s − 1.38e3·13-s − 148·17-s + 1.00e3·19-s − 624·21-s − 2.45e3·23-s − 4.50e3·27-s + 1.34e3·29-s + 2.24e3·31-s + 6.72e3·33-s + 5.94e3·37-s + 1.66e4·39-s + 2.30e4·41-s + 1.76e4·43-s − 2.90e3·47-s − 2.69e4·49-s + 1.77e3·51-s + 5.41e3·53-s − 1.20e4·57-s − 6.25e4·59-s + 1.41e4·61-s + 7.17e3·63-s − 8.54e4·67-s + 2.94e4·69-s + ⋯
L(s)  = 1  − 0.769·3-s + 0.401·7-s + 0.567·9-s − 1.39·11-s − 2.27·13-s − 0.124·17-s + 0.635·19-s − 0.308·21-s − 0.966·23-s − 1.18·27-s + 0.295·29-s + 0.420·31-s + 1.07·33-s + 0.713·37-s + 1.75·39-s + 2.14·41-s + 1.45·43-s − 0.192·47-s − 1.60·49-s + 0.0956·51-s + 0.264·53-s − 0.489·57-s − 2.34·59-s + 0.485·61-s + 0.227·63-s − 2.32·67-s + 0.744·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(160000\)    =    \(2^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(4115.67\)
Root analytic conductor: \(8.00958\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 160000,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$D_{4}$ \( 1 + 4 p T + 2 p T^{2} + 4 p^{6} T^{3} + p^{10} T^{4} \)
7$D_{4}$ \( 1 - 52 T + 29646 T^{2} - 52 p^{5} T^{3} + p^{10} T^{4} \)
11$D_{4}$ \( 1 + 560 T + 381926 T^{2} + 560 p^{5} T^{3} + p^{10} T^{4} \)
13$D_{4}$ \( 1 + 1388 T + 1149918 T^{2} + 1388 p^{5} T^{3} + p^{10} T^{4} \)
17$D_{4}$ \( 1 + 148 T - 795706 T^{2} + 148 p^{5} T^{3} + p^{10} T^{4} \)
19$D_{4}$ \( 1 - 1000 T + 4533462 T^{2} - 1000 p^{5} T^{3} + p^{10} T^{4} \)
23$D_{4}$ \( 1 + 2452 T + 6569198 T^{2} + 2452 p^{5} T^{3} + p^{10} T^{4} \)
29$D_{4}$ \( 1 - 1340 T - 8758306 T^{2} - 1340 p^{5} T^{3} + p^{10} T^{4} \)
31$D_{4}$ \( 1 - 2248 T + 57017022 T^{2} - 2248 p^{5} T^{3} + p^{10} T^{4} \)
37$D_{4}$ \( 1 - 5940 T + 123434318 T^{2} - 5940 p^{5} T^{3} + p^{10} T^{4} \)
41$D_{4}$ \( 1 - 23076 T + 352280470 T^{2} - 23076 p^{5} T^{3} + p^{10} T^{4} \)
43$D_{4}$ \( 1 - 17684 T + 312898614 T^{2} - 17684 p^{5} T^{3} + p^{10} T^{4} \)
47$D_{4}$ \( 1 + 2908 T + 56660030 T^{2} + 2908 p^{5} T^{3} + p^{10} T^{4} \)
53$D_{4}$ \( 1 - 5412 T + 693247822 T^{2} - 5412 p^{5} T^{3} + p^{10} T^{4} \)
59$D_{4}$ \( 1 + 62584 T + 2277965606 T^{2} + 62584 p^{5} T^{3} + p^{10} T^{4} \)
61$D_{4}$ \( 1 - 14108 T + 1110042462 T^{2} - 14108 p^{5} T^{3} + p^{10} T^{4} \)
67$D_{4}$ \( 1 + 85412 T + 4371910566 T^{2} + 85412 p^{5} T^{3} + p^{10} T^{4} \)
71$D_{4}$ \( 1 + 47208 T + 4011779662 T^{2} + 47208 p^{5} T^{3} + p^{10} T^{4} \)
73$D_{4}$ \( 1 - 924 p T + 4400780438 T^{2} - 924 p^{6} T^{3} + p^{10} T^{4} \)
79$D_{4}$ \( 1 - 65904 T + 3994274078 T^{2} - 65904 p^{5} T^{3} + p^{10} T^{4} \)
83$D_{4}$ \( 1 - 108724 T + 10572459494 T^{2} - 108724 p^{5} T^{3} + p^{10} T^{4} \)
89$D_{4}$ \( 1 + 55020 T + 10818978262 T^{2} + 55020 p^{5} T^{3} + p^{10} T^{4} \)
97$D_{4}$ \( 1 + 147668 T + 11612429670 T^{2} + 147668 p^{5} T^{3} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.32210149618459398837648146664, −9.727780318277424483882787351702, −9.496468199196660670474915257222, −9.105337353307699089399334489608, −8.016284745952880963481572173553, −7.75966050211441072659133828828, −7.62900989047835736359077136896, −7.08776763161553775509138154415, −6.21838542525810187159018167494, −5.98235000067180429959513461917, −5.24352775142049466478840642934, −4.96302903621047775984481241829, −4.49573515681219835518223467120, −3.94350993734851807979424323114, −2.74728765563721581162350622261, −2.64186017399520297856882663150, −1.85660239731371396509878399809, −0.997471681638018668352888054898, 0, 0, 0.997471681638018668352888054898, 1.85660239731371396509878399809, 2.64186017399520297856882663150, 2.74728765563721581162350622261, 3.94350993734851807979424323114, 4.49573515681219835518223467120, 4.96302903621047775984481241829, 5.24352775142049466478840642934, 5.98235000067180429959513461917, 6.21838542525810187159018167494, 7.08776763161553775509138154415, 7.62900989047835736359077136896, 7.75966050211441072659133828828, 8.016284745952880963481572173553, 9.105337353307699089399334489608, 9.496468199196660670474915257222, 9.727780318277424483882787351702, 10.32210149618459398837648146664

Graph of the $Z$-function along the critical line