Properties

Label 4-20e4-1.1-c2e2-0-8
Degree $4$
Conductor $160000$
Sign $1$
Analytic cond. $118.792$
Root an. cond. $3.30139$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·3-s − 6·7-s + 18·9-s − 24·11-s + 24·13-s − 24·17-s − 36·21-s + 6·23-s + 54·27-s + 16·31-s − 144·33-s + 96·37-s + 144·39-s − 96·41-s − 54·43-s + 54·47-s + 18·49-s − 144·51-s + 24·53-s + 64·61-s − 108·63-s − 6·67-s + 36·69-s + 96·71-s + 24·73-s + 144·77-s + 243·81-s + ⋯
L(s)  = 1  + 2·3-s − 6/7·7-s + 2·9-s − 2.18·11-s + 1.84·13-s − 1.41·17-s − 1.71·21-s + 6/23·23-s + 2·27-s + 0.516·31-s − 4.36·33-s + 2.59·37-s + 3.69·39-s − 2.34·41-s − 1.25·43-s + 1.14·47-s + 0.367·49-s − 2.82·51-s + 0.452·53-s + 1.04·61-s − 1.71·63-s − 0.0895·67-s + 0.521·69-s + 1.35·71-s + 0.328·73-s + 1.87·77-s + 3·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160000 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(160000\)    =    \(2^{8} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(118.792\)
Root analytic conductor: \(3.30139\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 160000,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.676454660\)
\(L(\frac12)\) \(\approx\) \(3.676454660\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_1$$\times$$C_2$ \( ( 1 - p T )^{2}( 1 + p^{2} T^{2} ) \)
7$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p^{2} T^{3} + p^{4} T^{4} \)
11$C_2$ \( ( 1 + 12 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 24 T + 288 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2^2$ \( 1 + 24 T + 288 T^{2} + 24 p^{2} T^{3} + p^{4} T^{4} \)
19$C_2^2$ \( 1 - 322 T^{2} + p^{4} T^{4} \)
23$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p^{2} T^{3} + p^{4} T^{4} \)
29$C_2^2$ \( 1 - 782 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 8 T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 96 T + 4608 T^{2} - 96 p^{2} T^{3} + p^{4} T^{4} \)
41$C_2$ \( ( 1 + 48 T + p^{2} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 54 T + 1458 T^{2} + 54 p^{2} T^{3} + p^{4} T^{4} \)
47$C_2^2$ \( 1 - 54 T + 1458 T^{2} - 54 p^{2} T^{3} + p^{4} T^{4} \)
53$C_2^2$ \( 1 - 24 T + 288 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 3362 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 32 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p^{2} T^{3} + p^{4} T^{4} \)
71$C_2$ \( ( 1 - 48 T + p^{2} T^{2} )^{2} \)
73$C_2^2$ \( 1 - 24 T + 288 T^{2} - 24 p^{2} T^{3} + p^{4} T^{4} \)
79$C_2^2$ \( 1 - 10882 T^{2} + p^{4} T^{4} \)
83$C_2^2$ \( 1 - 186 T + 17298 T^{2} - 186 p^{2} T^{3} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 14942 T^{2} + p^{4} T^{4} \)
97$C_2^2$ \( 1 + 24 T + 288 T^{2} + 24 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.05925817285144134888551415893, −10.72458175013660918899007493321, −10.34956344924694387662957205145, −9.762200093610540505237693532766, −9.454610981170812238437921104651, −8.720518630164331904751601750397, −8.634734448814526651943708523415, −8.046098344605982634052705512875, −7.997532272068241714216158431501, −7.15701527832404135082446591706, −6.62232716123270145599430820839, −6.24667956975343857049687817858, −5.47141942814565829961468910398, −4.81405399984980270801786351033, −4.19306810438204231847214840536, −3.37308028498856193386153598131, −3.22672451318060338373723014491, −2.43870676023969589162237627710, −2.13607627564002681267071726745, −0.72747279136474027612099661197, 0.72747279136474027612099661197, 2.13607627564002681267071726745, 2.43870676023969589162237627710, 3.22672451318060338373723014491, 3.37308028498856193386153598131, 4.19306810438204231847214840536, 4.81405399984980270801786351033, 5.47141942814565829961468910398, 6.24667956975343857049687817858, 6.62232716123270145599430820839, 7.15701527832404135082446591706, 7.997532272068241714216158431501, 8.046098344605982634052705512875, 8.634734448814526651943708523415, 8.720518630164331904751601750397, 9.454610981170812238437921104651, 9.762200093610540505237693532766, 10.34956344924694387662957205145, 10.72458175013660918899007493321, 11.05925817285144134888551415893

Graph of the $Z$-function along the critical line