Properties

Label 8-20e8-1.1-c0e4-0-0
Degree $8$
Conductor $25600000000$
Sign $1$
Analytic cond. $0.00158806$
Root an. cond. $0.446795$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 9-s − 2·29-s − 5·37-s + 2·41-s + 45-s − 4·49-s − 5·53-s + 2·61-s + 3·89-s − 2·101-s + 2·109-s + 5·113-s − 121-s + 127-s + 131-s + 137-s + 139-s − 2·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + ⋯
L(s)  = 1  + 5-s + 9-s − 2·29-s − 5·37-s + 2·41-s + 45-s − 4·49-s − 5·53-s + 2·61-s + 3·89-s − 2·101-s + 2·109-s + 5·113-s − 121-s + 127-s + 131-s + 137-s + 139-s − 2·145-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(0.00158806\)
Root analytic conductor: \(0.446795\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 5^{8} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5631873657\)
\(L(\frac12)\) \(\approx\) \(0.5631873657\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_4$ \( 1 - T + T^{2} - T^{3} + T^{4} \)
good3$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
7$C_2$ \( ( 1 + T^{2} )^{4} \)
11$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
13$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
17$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
19$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
23$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
29$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
31$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
37$C_1$$\times$$C_4$ \( ( 1 + T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
41$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
43$C_2$ \( ( 1 + T^{2} )^{4} \)
47$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
53$C_1$$\times$$C_4$ \( ( 1 + T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
59$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
61$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
67$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
71$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
73$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
79$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
83$C_4\times C_2$ \( 1 - T^{2} + T^{4} - T^{6} + T^{8} \)
89$C_1$$\times$$C_4$ \( ( 1 - T )^{4}( 1 + T + T^{2} + T^{3} + T^{4} ) \)
97$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.489396176711942148396774653560, −7.978463847911908916938723159038, −7.84414524235281552958243320580, −7.71483788247822969985118280640, −7.60550967556955935521421202044, −7.05623045946663616135209441725, −6.74549520858252794415983061086, −6.73897551594214695699563904732, −6.52427110502955273373945286963, −6.23331572366010476200713015836, −5.75806364247508604987487712696, −5.56969426992634278410032912524, −5.48424688781297726805139371174, −5.06067267484679542299630247484, −4.65983919067586011978452406047, −4.60856107789088923068857021480, −4.40285810040452310654867563553, −3.66106938071268329555122306825, −3.43044045478236439737860899365, −3.28986863138439458539880391728, −3.18756660000288309152276272385, −2.16399591947852327969843929509, −2.04366977008997274103467555820, −1.67747576978274899193502685885, −1.51592311804360774136872033011, 1.51592311804360774136872033011, 1.67747576978274899193502685885, 2.04366977008997274103467555820, 2.16399591947852327969843929509, 3.18756660000288309152276272385, 3.28986863138439458539880391728, 3.43044045478236439737860899365, 3.66106938071268329555122306825, 4.40285810040452310654867563553, 4.60856107789088923068857021480, 4.65983919067586011978452406047, 5.06067267484679542299630247484, 5.48424688781297726805139371174, 5.56969426992634278410032912524, 5.75806364247508604987487712696, 6.23331572366010476200713015836, 6.52427110502955273373945286963, 6.73897551594214695699563904732, 6.74549520858252794415983061086, 7.05623045946663616135209441725, 7.60550967556955935521421202044, 7.71483788247822969985118280640, 7.84414524235281552958243320580, 7.978463847911908916938723159038, 8.489396176711942148396774653560

Graph of the $Z$-function along the critical line