Properties

Label 2-2e2-4.3-c12-0-1
Degree $2$
Conductor $4$
Sign $1$
Analytic cond. $3.65597$
Root an. cond. $1.91206$
Motivic weight $12$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 64·2-s + 4.09e3·4-s + 2.35e4·5-s − 2.62e5·8-s + 5.31e5·9-s − 1.50e6·10-s + 6.91e6·13-s + 1.67e7·16-s − 4.72e7·17-s − 3.40e7·18-s + 9.62e7·20-s + 3.08e8·25-s − 4.42e8·26-s − 1.73e8·29-s − 1.07e9·32-s + 3.02e9·34-s + 2.17e9·36-s − 2.05e9·37-s − 6.16e9·40-s − 2.28e9·41-s + 1.24e10·45-s + 1.38e10·49-s − 1.97e10·50-s + 2.83e10·52-s − 4.34e10·53-s + 1.11e10·58-s − 4.78e10·61-s + ⋯
L(s)  = 1  − 2-s + 4-s + 1.50·5-s − 8-s + 9-s − 1.50·10-s + 1.43·13-s + 16-s − 1.95·17-s − 18-s + 1.50·20-s + 1.26·25-s − 1.43·26-s − 0.291·29-s − 32-s + 1.95·34-s + 36-s − 0.799·37-s − 1.50·40-s − 0.481·41-s + 1.50·45-s + 49-s − 1.26·50-s + 1.43·52-s − 1.96·53-s + 0.291·58-s − 0.928·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(13-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4 ^{s/2} \, \Gamma_{\C}(s+6) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4\)    =    \(2^{2}\)
Sign: $1$
Analytic conductor: \(3.65597\)
Root analytic conductor: \(1.91206\)
Motivic weight: \(12\)
Rational: yes
Arithmetic: yes
Character: $\chi_{4} (3, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4,\ (\ :6),\ 1)\)

Particular Values

\(L(\frac{13}{2})\) \(\approx\) \(1.215168254\)
\(L(\frac12)\) \(\approx\) \(1.215168254\)
\(L(7)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{6} T \)
good3 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
5 \( 1 - 23506 T + p^{12} T^{2} \)
7 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
11 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
13 \( 1 - 6911282 T + p^{12} T^{2} \)
17 \( 1 + 47295038 T + p^{12} T^{2} \)
19 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
23 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
29 \( 1 + 173439758 T + p^{12} T^{2} \)
31 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
37 \( 1 + 2050092718 T + p^{12} T^{2} \)
41 \( 1 + 2285065118 T + p^{12} T^{2} \)
43 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
47 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
53 \( 1 + 43462597358 T + p^{12} T^{2} \)
59 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
61 \( 1 + 47844884878 T + p^{12} T^{2} \)
67 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
71 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
73 \( 1 + 119852347678 T + p^{12} T^{2} \)
79 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
83 \( ( 1 - p^{6} T )( 1 + p^{6} T ) \)
89 \( 1 - 907573615522 T + p^{12} T^{2} \)
97 \( 1 - 502341690242 T + p^{12} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−21.74181247581787008778530113983, −20.56768855042740253895318316155, −18.51460181035323228390667973884, −17.51327125303811760908080700334, −15.75162371202038124789399710352, −13.32375910129298937575455768067, −10.65301596592464524474136750475, −9.099703523665283906261706405805, −6.44774866235029399555885813687, −1.72643016907722640515214317980, 1.72643016907722640515214317980, 6.44774866235029399555885813687, 9.099703523665283906261706405805, 10.65301596592464524474136750475, 13.32375910129298937575455768067, 15.75162371202038124789399710352, 17.51327125303811760908080700334, 18.51460181035323228390667973884, 20.56768855042740253895318316155, 21.74181247581787008778530113983

Graph of the $Z$-function along the critical line