| L(s) = 1 | + (−1 + 1.73i)2-s + (−0.5 − 0.866i)3-s + (−0.999 − 1.73i)4-s + (−0.5 + 0.866i)5-s + 1.99·6-s + (2 − 1.73i)7-s + (−0.499 + 0.866i)9-s + (−0.999 − 1.73i)10-s + (−2 − 3.46i)11-s + (−1 + 1.73i)12-s + 4·13-s + (0.999 + 5.19i)14-s + 0.999·15-s + (1.99 − 3.46i)16-s + (−1.5 − 2.59i)17-s + (−0.999 − 1.73i)18-s + ⋯ |
| L(s) = 1 | + (−0.707 + 1.22i)2-s + (−0.288 − 0.499i)3-s + (−0.499 − 0.866i)4-s + (−0.223 + 0.387i)5-s + 0.816·6-s + (0.755 − 0.654i)7-s + (−0.166 + 0.288i)9-s + (−0.316 − 0.547i)10-s + (−0.603 − 1.04i)11-s + (−0.288 + 0.499i)12-s + 1.10·13-s + (0.267 + 1.38i)14-s + 0.258·15-s + (0.499 − 0.866i)16-s + (−0.363 − 0.630i)17-s + (−0.235 − 0.408i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 399 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.807395 + 0.102889i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.807395 + 0.102889i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (-2 + 1.73i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
| good | 2 | \( 1 + (1 - 1.73i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2 + 3.46i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 4T + 13T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.5 + 2.59i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 10T + 29T^{2} \) |
| 31 | \( 1 + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3 + 5.19i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 2T + 41T^{2} \) |
| 43 | \( 1 + 7T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6 - 10.3i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6 + 10.3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (5 - 8.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5 + 8.66i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6T + 71T^{2} \) |
| 73 | \( 1 + (3 + 5.19i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5 + 8.66i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 3T + 83T^{2} \) |
| 89 | \( 1 + (-7 + 12.1i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 12T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06082717898497557684684798234, −10.56247610141483054139434048144, −9.025644260089397023129824592118, −8.300270065100681228671581932739, −7.59655431279357530699910183427, −6.75918380297661547156631849617, −5.96042093331962637230411236484, −4.82702870174306281283561689745, −3.07963926922204966930739485640, −0.807058801277600837067674566414,
1.37748747902945203765597400910, 2.71305702172341658616408371405, 4.14527672094507181722081981980, 5.15765786481309586860098007497, 6.41309874332938877159518966720, 8.184251692188129543680124919564, 8.593234665854215871497201625291, 9.652349723397123301989287590201, 10.43055393104856466330457629662, 11.11434093392526582166926013506