Properties

Label 4-63e4-1.1-c1e2-0-4
Degree $4$
Conductor $15752961$
Sign $1$
Analytic cond. $1004.42$
Root an. cond. $5.62962$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 2·13-s − 3·16-s − 4·19-s − 7·25-s − 16·31-s − 14·37-s + 4·43-s − 2·52-s + 14·61-s + 7·64-s − 20·67-s + 14·73-s + 4·76-s + 4·79-s − 4·97-s + 7·100-s − 16·103-s + 22·109-s − 10·121-s + 16·124-s + 127-s + 131-s + 137-s + 139-s + 14·148-s + 149-s + ⋯
L(s)  = 1  − 1/2·4-s + 0.554·13-s − 3/4·16-s − 0.917·19-s − 7/5·25-s − 2.87·31-s − 2.30·37-s + 0.609·43-s − 0.277·52-s + 1.79·61-s + 7/8·64-s − 2.44·67-s + 1.63·73-s + 0.458·76-s + 0.450·79-s − 0.406·97-s + 7/10·100-s − 1.57·103-s + 2.10·109-s − 0.909·121-s + 1.43·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.15·148-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15752961 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15752961 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15752961\)    =    \(3^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(1004.42\)
Root analytic conductor: \(5.62962\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 15752961,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
17$C_2^2$ \( 1 + 7 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 55 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 74 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 26 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 151 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.351864881282740620795146992606, −8.046073946619554464126667924969, −7.41567786564871440930638373025, −7.08361481449999721694188935183, −7.07155350805120759726058089148, −6.34503351226356896461300523079, −6.01899900172669675147831817346, −5.72750951628917383799341912272, −5.12939503069937808715385834084, −5.06610493216526632792525739921, −4.42704368704245395155838017340, −3.92992721624233989312251724769, −3.67277783861965739710948188494, −3.49392562877687318654810253062, −2.62764991490176986388350922920, −2.07487228904507212952730528348, −1.87285744143315833987391475219, −1.17194717343387249432052540940, 0, 0, 1.17194717343387249432052540940, 1.87285744143315833987391475219, 2.07487228904507212952730528348, 2.62764991490176986388350922920, 3.49392562877687318654810253062, 3.67277783861965739710948188494, 3.92992721624233989312251724769, 4.42704368704245395155838017340, 5.06610493216526632792525739921, 5.12939503069937808715385834084, 5.72750951628917383799341912272, 6.01899900172669675147831817346, 6.34503351226356896461300523079, 7.07155350805120759726058089148, 7.08361481449999721694188935183, 7.41567786564871440930638373025, 8.046073946619554464126667924969, 8.351864881282740620795146992606

Graph of the $Z$-function along the critical line