# Properties

 Degree $2$ Conductor $3969$ Sign $0.971 + 0.235i$ Motivic weight $0$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 − 4-s + 16-s + (−0.5 − 0.866i)25-s + (1 + 1.73i)37-s + (1 − 1.73i)43-s − 64-s + 2·67-s + 2·79-s + (0.5 + 0.866i)100-s + (1 − 1.73i)109-s + ⋯
 L(s)  = 1 − 4-s + 16-s + (−0.5 − 0.866i)25-s + (1 + 1.73i)37-s + (1 − 1.73i)43-s − 64-s + 2·67-s + 2·79-s + (0.5 + 0.866i)100-s + (1 − 1.73i)109-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.971 + 0.235i)\, \overline{\Lambda}(1-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 3969 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.971 + 0.235i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$3969$$    =    $$3^{4} \cdot 7^{2}$$ Sign: $0.971 + 0.235i$ Motivic weight: $$0$$ Character: $\chi_{3969} (2971, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 3969,\ (\ :0),\ 0.971 + 0.235i)$$

## Particular Values

 $$L(\frac{1}{2})$$ $$\approx$$ $$0.9676890712$$ $$L(\frac12)$$ $$\approx$$ $$0.9676890712$$ $$L(1)$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1$$
7 $$1$$
good2 $$1 + T^{2}$$
5 $$1 + (0.5 + 0.866i)T^{2}$$
11 $$1 + (-0.5 + 0.866i)T^{2}$$
13 $$1 + (0.5 - 0.866i)T^{2}$$
17 $$1 + (0.5 + 0.866i)T^{2}$$
19 $$1 + (0.5 - 0.866i)T^{2}$$
23 $$1 + (-0.5 - 0.866i)T^{2}$$
29 $$1 + (-0.5 - 0.866i)T^{2}$$
31 $$1 - T^{2}$$
37 $$1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2}$$
41 $$1 + (0.5 - 0.866i)T^{2}$$
43 $$1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2}$$
47 $$1 - T^{2}$$
53 $$1 + (-0.5 - 0.866i)T^{2}$$
59 $$1 - T^{2}$$
61 $$1 - T^{2}$$
67 $$1 - 2T + T^{2}$$
71 $$1 + T^{2}$$
73 $$1 + (0.5 + 0.866i)T^{2}$$
79 $$1 - 2T + T^{2}$$
83 $$1 + (0.5 + 0.866i)T^{2}$$
89 $$1 + (0.5 - 0.866i)T^{2}$$
97 $$1 + (0.5 + 0.866i)T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$