Properties

Label 8-390e4-1.1-c1e4-0-6
Degree $8$
Conductor $23134410000$
Sign $1$
Analytic cond. $94.0517$
Root an. cond. $1.76469$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s + 4·5-s + 9-s − 6·11-s + 4·20-s + 2·25-s − 14·29-s + 4·31-s + 36-s − 6·44-s + 4·45-s − 14·49-s − 24·55-s − 22·59-s − 64-s − 8·71-s − 4·79-s − 8·89-s − 6·99-s + 2·100-s + 28·101-s + 64·109-s − 14·116-s + 31·121-s + 4·124-s − 28·125-s + 127-s + ⋯
L(s)  = 1  + 1/2·4-s + 1.78·5-s + 1/3·9-s − 1.80·11-s + 0.894·20-s + 2/5·25-s − 2.59·29-s + 0.718·31-s + 1/6·36-s − 0.904·44-s + 0.596·45-s − 2·49-s − 3.23·55-s − 2.86·59-s − 1/8·64-s − 0.949·71-s − 0.450·79-s − 0.847·89-s − 0.603·99-s + 1/5·100-s + 2.78·101-s + 6.13·109-s − 1.29·116-s + 2.81·121-s + 0.359·124-s − 2.50·125-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(94.0517\)
Root analytic conductor: \(1.76469\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(2.253011786\)
\(L(\frac12)\) \(\approx\) \(2.253011786\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - T^{2} + T^{4} \)
3$C_2^2$ \( 1 - T^{2} + T^{4} \)
5$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
good7$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 3 T - 2 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2^3$ \( 1 - 2 T^{2} - 285 T^{4} - 2 p^{2} T^{6} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 35 T^{2} + 696 T^{4} - 35 p^{2} T^{6} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 7 T + 20 T^{2} + 7 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - T + p T^{2} )^{4} \)
37$C_2^2$$\times$$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )( 1 + 47 T^{2} + p^{2} T^{4} ) \)
41$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$$\times$$C_2^2$ \( ( 1 - 61 T^{2} + p^{2} T^{4} )( 1 - 22 T^{2} + p^{2} T^{4} ) \)
47$C_2^2$ \( ( 1 + 27 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 + 11 T + 62 T^{2} + 11 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 118 T^{2} + 9435 T^{4} + 118 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2^2$ \( ( 1 + 4 T - 55 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - p T^{2} )^{4} \)
79$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 150 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 4 T - 73 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
97$C_2^3$ \( 1 + 178 T^{2} + 22275 T^{4} + 178 p^{2} T^{6} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.308745854675354611959574869291, −7.81252339959170431792992238353, −7.52968644524750381490817055345, −7.49469052842598502006210800059, −7.33746365557553125324320942697, −7.11840521164862702860675046279, −6.52115377836540307523463450004, −6.32044922050739498007105159039, −6.11866823091013366769452632513, −5.95030175853905733310980143311, −5.73619607287467534759947723992, −5.40095545594166892986445322971, −5.27957983684157521839533100709, −4.70081728248280564190534106947, −4.59600379550292898199093262875, −4.52530387999619851243271388278, −3.81633843893756395159065008809, −3.43246629461652458233756253495, −3.09661721052871470526448639099, −2.99300254036233513121987740804, −2.44295096399459258998585735692, −1.87860998897190478289866382792, −1.86049703780094644396014637768, −1.73342209136597312468964981183, −0.52346946873224122951136894530, 0.52346946873224122951136894530, 1.73342209136597312468964981183, 1.86049703780094644396014637768, 1.87860998897190478289866382792, 2.44295096399459258998585735692, 2.99300254036233513121987740804, 3.09661721052871470526448639099, 3.43246629461652458233756253495, 3.81633843893756395159065008809, 4.52530387999619851243271388278, 4.59600379550292898199093262875, 4.70081728248280564190534106947, 5.27957983684157521839533100709, 5.40095545594166892986445322971, 5.73619607287467534759947723992, 5.95030175853905733310980143311, 6.11866823091013366769452632513, 6.32044922050739498007105159039, 6.52115377836540307523463450004, 7.11840521164862702860675046279, 7.33746365557553125324320942697, 7.49469052842598502006210800059, 7.52968644524750381490817055345, 7.81252339959170431792992238353, 8.308745854675354611959574869291

Graph of the $Z$-function along the critical line