L(s) = 1 | + (−0.707 + 0.707i)2-s + (−1.41 − i)3-s − 1.00i·4-s + (0.707 − 2.12i)5-s + (1.70 − 0.292i)6-s + (0.585 + 0.585i)7-s + (0.707 + 0.707i)8-s + (1.00 + 2.82i)9-s + (0.999 + 2i)10-s − 4i·11-s + (−1.00 + 1.41i)12-s + (−0.707 + 0.707i)13-s − 0.828·14-s + (−3.12 + 2.29i)15-s − 1.00·16-s + (−3 + 3i)17-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (−0.816 − 0.577i)3-s − 0.500i·4-s + (0.316 − 0.948i)5-s + (0.696 − 0.119i)6-s + (0.221 + 0.221i)7-s + (0.250 + 0.250i)8-s + (0.333 + 0.942i)9-s + (0.316 + 0.632i)10-s − 1.20i·11-s + (−0.288 + 0.408i)12-s + (−0.196 + 0.196i)13-s − 0.221·14-s + (−0.805 + 0.592i)15-s − 0.250·16-s + (−0.727 + 0.727i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.374 + 0.927i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.374 + 0.927i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.345558 - 0.512136i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.345558 - 0.512136i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (1.41 + i)T \) |
| 5 | \( 1 + (-0.707 + 2.12i)T \) |
| 13 | \( 1 + (0.707 - 0.707i)T \) |
good | 7 | \( 1 + (-0.585 - 0.585i)T + 7iT^{2} \) |
| 11 | \( 1 + 4iT - 11T^{2} \) |
| 17 | \( 1 + (3 - 3i)T - 17iT^{2} \) |
| 19 | \( 1 + 6.82iT - 19T^{2} \) |
| 23 | \( 1 + (2.82 + 2.82i)T + 23iT^{2} \) |
| 29 | \( 1 + 6T + 29T^{2} \) |
| 31 | \( 1 - 3.41T + 31T^{2} \) |
| 37 | \( 1 + (2.58 + 2.58i)T + 37iT^{2} \) |
| 41 | \( 1 + 2iT - 41T^{2} \) |
| 43 | \( 1 + (-1.24 + 1.24i)T - 43iT^{2} \) |
| 47 | \( 1 + (2.24 - 2.24i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.585 - 0.585i)T + 53iT^{2} \) |
| 59 | \( 1 - 4.48T + 59T^{2} \) |
| 61 | \( 1 - 4.82T + 61T^{2} \) |
| 67 | \( 1 + (0.828 + 0.828i)T + 67iT^{2} \) |
| 71 | \( 1 - 14.2iT - 71T^{2} \) |
| 73 | \( 1 + (11.0 - 11.0i)T - 73iT^{2} \) |
| 79 | \( 1 + 12.4iT - 79T^{2} \) |
| 83 | \( 1 + (6.82 + 6.82i)T + 83iT^{2} \) |
| 89 | \( 1 - 11.1T + 89T^{2} \) |
| 97 | \( 1 + (-9.07 - 9.07i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.12741504192515361248153307657, −10.12425617522756951133904276913, −8.859468425361315376454223034291, −8.420480113526148456190858538482, −7.20648646356412786371071650270, −6.19074691674378051298019067888, −5.47730516189928737245170893962, −4.46676605468696305797283336495, −2.05893188539416230483846160679, −0.52324226545872310183666597743,
1.91208173192140746515036717592, 3.49414023136330298830874490160, 4.60588035208488916483924363412, 5.88377863499871455464364409861, 6.95647628325603408388792763229, 7.77066286457217796851671203475, 9.345914280432447398023532416183, 9.989481760553002633866796684891, 10.53357092643256446378856799892, 11.47972028688588445839458255607