Properties

Degree $2$
Conductor $390$
Sign $1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s + 8-s + 9-s + 10-s + 4·11-s − 12-s + 13-s − 15-s + 16-s − 6·17-s + 18-s + 4·19-s + 20-s + 4·22-s + 8·23-s − 24-s + 25-s + 26-s − 27-s + 6·29-s − 30-s − 8·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.20·11-s − 0.288·12-s + 0.277·13-s − 0.258·15-s + 1/4·16-s − 1.45·17-s + 0.235·18-s + 0.917·19-s + 0.223·20-s + 0.852·22-s + 1.66·23-s − 0.204·24-s + 1/5·25-s + 0.196·26-s − 0.192·27-s + 1.11·29-s − 0.182·30-s − 1.43·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(390\)    =    \(2 \cdot 3 \cdot 5 \cdot 13\)
Sign: $1$
Motivic weight: \(1\)
Character: $\chi_{390} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 390,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.95982\)
\(L(\frac12)\) \(\approx\) \(1.95982\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 - T \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 16 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 16 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.32890074287175162448728607969, −10.75872349499439742945572588393, −9.514279277335677470488949396285, −8.704161392497895712433987031068, −7.03582983327921838179279968038, −6.57267675826487089075525795107, −5.43160779320744251383504417132, −4.53496762516360346181339328954, −3.26654328534844814185904778325, −1.55977141690761434296396620452, 1.55977141690761434296396620452, 3.26654328534844814185904778325, 4.53496762516360346181339328954, 5.43160779320744251383504417132, 6.57267675826487089075525795107, 7.03582983327921838179279968038, 8.704161392497895712433987031068, 9.514279277335677470488949396285, 10.75872349499439742945572588393, 11.32890074287175162448728607969

Graph of the $Z$-function along the critical line