Properties

Label 4-39e2-1.1-c3e2-0-0
Degree $4$
Conductor $1521$
Sign $1$
Analytic cond. $5.29494$
Root an. cond. $1.51692$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 3·3-s + 8·4-s − 18·5-s + 9·6-s − 2·7-s − 45·8-s + 54·10-s − 30·11-s − 24·12-s + 65·13-s + 6·14-s + 54·15-s + 135·16-s + 111·17-s + 46·19-s − 144·20-s + 6·21-s + 90·22-s + 6·23-s + 135·24-s − 7·25-s − 195·26-s + 27·27-s − 16·28-s + 105·29-s − 162·30-s + ⋯
L(s)  = 1  − 1.06·2-s − 0.577·3-s + 4-s − 1.60·5-s + 0.612·6-s − 0.107·7-s − 1.98·8-s + 1.70·10-s − 0.822·11-s − 0.577·12-s + 1.38·13-s + 0.114·14-s + 0.929·15-s + 2.10·16-s + 1.58·17-s + 0.555·19-s − 1.60·20-s + 0.0623·21-s + 0.872·22-s + 0.0543·23-s + 1.14·24-s − 0.0559·25-s − 1.47·26-s + 0.192·27-s − 0.107·28-s + 0.672·29-s − 0.985·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1521 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1521\)    =    \(3^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(5.29494\)
Root analytic conductor: \(1.51692\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 1521,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3996922168\)
\(L(\frac12)\) \(\approx\) \(0.3996922168\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( 1 + p T + p^{2} T^{2} \)
13$C_2$ \( 1 - 5 p T + p^{3} T^{2} \)
good2$C_2^2$ \( 1 + 3 T + T^{2} + 3 p^{3} T^{3} + p^{6} T^{4} \)
5$C_2$ \( ( 1 + 9 T + p^{3} T^{2} )^{2} \)
7$C_2^2$ \( 1 + 2 T - 339 T^{2} + 2 p^{3} T^{3} + p^{6} T^{4} \)
11$C_2^2$ \( 1 + 30 T - 431 T^{2} + 30 p^{3} T^{3} + p^{6} T^{4} \)
17$C_2^2$ \( 1 - 111 T + 7408 T^{2} - 111 p^{3} T^{3} + p^{6} T^{4} \)
19$C_2^2$ \( 1 - 46 T - 4743 T^{2} - 46 p^{3} T^{3} + p^{6} T^{4} \)
23$C_2^2$ \( 1 - 6 T - 12131 T^{2} - 6 p^{3} T^{3} + p^{6} T^{4} \)
29$C_2^2$ \( 1 - 105 T - 13364 T^{2} - 105 p^{3} T^{3} + p^{6} T^{4} \)
31$C_2$ \( ( 1 + 100 T + p^{3} T^{2} )^{2} \)
37$C_2^2$ \( 1 + 17 T - 50364 T^{2} + 17 p^{3} T^{3} + p^{6} T^{4} \)
41$C_2^2$ \( 1 - 231 T - 15560 T^{2} - 231 p^{3} T^{3} + p^{6} T^{4} \)
43$C_2^2$ \( 1 - 514 T + 184689 T^{2} - 514 p^{3} T^{3} + p^{6} T^{4} \)
47$C_2$ \( ( 1 + 162 T + p^{3} T^{2} )^{2} \)
53$C_2$ \( ( 1 - 639 T + p^{3} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 600 T + 154621 T^{2} + 600 p^{3} T^{3} + p^{6} T^{4} \)
61$C_2^2$ \( 1 + 233 T - 172692 T^{2} + 233 p^{3} T^{3} + p^{6} T^{4} \)
67$C_2^2$ \( 1 + 926 T + 556713 T^{2} + 926 p^{3} T^{3} + p^{6} T^{4} \)
71$C_2^2$ \( 1 - 930 T + 506989 T^{2} - 930 p^{3} T^{3} + p^{6} T^{4} \)
73$C_2$ \( ( 1 + 253 T + p^{3} T^{2} )^{2} \)
79$C_2$ \( ( 1 + 1324 T + p^{3} T^{2} )^{2} \)
83$C_2$ \( ( 1 - 810 T + p^{3} T^{2} )^{2} \)
89$C_2^2$ \( 1 + 498 T - 456965 T^{2} + 498 p^{3} T^{3} + p^{6} T^{4} \)
97$C_2$ \( ( 1 - 5 p T + p^{3} T^{2} )( 1 + 19 p T + p^{3} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.24969277513667795997208849911, −15.50821788485238729494204240858, −15.35502232383205681484682292362, −14.54885741006108173524894542380, −13.72168642900760615102413011191, −12.58044740512525358456738198264, −12.31903367622654020636877500208, −11.48386637473184268745797676856, −11.45846709897553172883995877490, −10.53413358628060379033607761988, −9.978461626752906803190522287028, −8.949347206956979154885561145505, −8.515736016715523211199606996911, −7.55338517681390666667414049695, −7.44163828027592214396493997798, −5.95406759271731495737716299802, −5.69451087536718866451308193320, −3.89582735149094349531468270883, −3.07740421174496972295053312568, −0.66173629771368750311017618197, 0.66173629771368750311017618197, 3.07740421174496972295053312568, 3.89582735149094349531468270883, 5.69451087536718866451308193320, 5.95406759271731495737716299802, 7.44163828027592214396493997798, 7.55338517681390666667414049695, 8.515736016715523211199606996911, 8.949347206956979154885561145505, 9.978461626752906803190522287028, 10.53413358628060379033607761988, 11.45846709897553172883995877490, 11.48386637473184268745797676856, 12.31903367622654020636877500208, 12.58044740512525358456738198264, 13.72168642900760615102413011191, 14.54885741006108173524894542380, 15.35502232383205681484682292362, 15.50821788485238729494204240858, 16.24969277513667795997208849911

Graph of the $Z$-function along the critical line