Properties

Label 8-39e4-1.1-c1e4-0-1
Degree $8$
Conductor $2313441$
Sign $1$
Analytic cond. $0.00940517$
Root an. cond. $0.558047$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·3-s + 4·7-s + 6·9-s − 8·13-s − 16-s + 4·19-s − 16·21-s + 4·27-s − 20·31-s + 4·37-s + 32·39-s + 4·48-s + 8·49-s − 16·57-s + 32·61-s + 24·63-s − 20·67-s + 4·73-s − 40·79-s − 37·81-s − 32·91-s + 80·93-s + 28·97-s + 4·109-s − 16·111-s − 4·112-s − 48·117-s + ⋯
L(s)  = 1  − 2.30·3-s + 1.51·7-s + 2·9-s − 2.21·13-s − 1/4·16-s + 0.917·19-s − 3.49·21-s + 0.769·27-s − 3.59·31-s + 0.657·37-s + 5.12·39-s + 0.577·48-s + 8/7·49-s − 2.11·57-s + 4.09·61-s + 3.02·63-s − 2.44·67-s + 0.468·73-s − 4.50·79-s − 4.11·81-s − 3.35·91-s + 8.29·93-s + 2.84·97-s + 0.383·109-s − 1.51·111-s − 0.377·112-s − 4.43·117-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2313441 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2313441 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2313441\)    =    \(3^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(0.00940517\)
Root analytic conductor: \(0.558047\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2313441,\ (\ :1/2, 1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2065589846\)
\(L(\frac12)\) \(\approx\) \(0.2065589846\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
good2$C_2^3$ \( 1 + T^{4} + p^{4} T^{8} \)
5$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )( 1 + 8 T^{2} + p^{2} T^{4} ) \)
7$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^3$ \( 1 - 206 T^{4} + p^{4} T^{8} \)
17$C_2$ \( ( 1 + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^3$ \( 1 + 2722 T^{4} + p^{4} T^{8} \)
43$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 + 1666 T^{4} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^3$ \( 1 + 3442 T^{4} + p^{4} T^{8} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 10 T + 50 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^3$ \( 1 + 5794 T^{4} + p^{4} T^{8} \)
73$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
83$C_2^3$ \( 1 - 3374 T^{4} + p^{4} T^{8} \)
89$C_2^3$ \( 1 - 15518 T^{4} + p^{4} T^{8} \)
97$C_2^2$ \( ( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.04534595841437143990557330796, −11.77109277835793986615228769704, −11.63744982230134169591864503918, −11.30675612783787748154691379910, −11.27655515850053202120672354428, −10.85600526130536181306413773038, −10.33856833734465824807928151464, −10.08889150269282229426962884314, −10.02155482040305598488882210727, −9.211180387486936601493784758346, −9.046220776353028334574936459101, −8.664988877066061889315090811529, −8.061664789178817862340467456829, −7.64074234927874492951923188733, −7.27446410265545340213486625433, −7.09147578880902535888251385419, −6.70588095140817211226667910466, −5.91663455141999524000695565236, −5.60369323473452934674015467315, −5.27301574152984749826579822970, −5.19091605701394411623288195776, −4.53048237557237169882638974755, −4.20924296412302041216682511933, −3.05896449183021981084934127189, −2.01645263655581689352851342192, 2.01645263655581689352851342192, 3.05896449183021981084934127189, 4.20924296412302041216682511933, 4.53048237557237169882638974755, 5.19091605701394411623288195776, 5.27301574152984749826579822970, 5.60369323473452934674015467315, 5.91663455141999524000695565236, 6.70588095140817211226667910466, 7.09147578880902535888251385419, 7.27446410265545340213486625433, 7.64074234927874492951923188733, 8.061664789178817862340467456829, 8.664988877066061889315090811529, 9.046220776353028334574936459101, 9.211180387486936601493784758346, 10.02155482040305598488882210727, 10.08889150269282229426962884314, 10.33856833734465824807928151464, 10.85600526130536181306413773038, 11.27655515850053202120672354428, 11.30675612783787748154691379910, 11.63744982230134169591864503918, 11.77109277835793986615228769704, 12.04534595841437143990557330796

Graph of the $Z$-function along the critical line